Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cyclosaplin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3129 KB  
Article
Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
by Abheepsa Mishra and Satyahari Dey
Biomolecules 2019, 9(11), 740; https://doi.org/10.3390/biom9110740 - 15 Nov 2019
Cited by 39 | Viewed by 8113
Abstract
Natural products from plants, such as chemopreventive agents, attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure-based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, [...] Read more.
Natural products from plants, such as chemopreventive agents, attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure-based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide-based therapeutics have been developed to combat several health disorders, including cancers, metabolic disorders, heart-related diseases, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, the in silico activities of cyclic peptides towards molecular targets, such as protein kinases, proteases, and apoptosis related proteins have not been extensively investigated. In this study, we explored the in silico kinase and protease inhibitor potentials of cyclosaplin, and studied the interactions of cyclosaplin with other apoptosis-related proteins. Previously, the structure of cyclosaplin was elucidated by molecular modeling associated with dynamics that were used in the current study as well. Docking studies showed strong affinity of cyclosaplin towards cancer-related proteins. The binding affinity closer to 10 kcal/mol indicated efficient binding. Cyclosaplin showed strong binding affinities towards protein kinases such as EGFR, VEGFR2, PKB, and p38, indicating its potential role in protein kinase inhibition. Moreover, it displayed strong binding affinity to apoptosis-related proteins and revealed the possible role of cyclosaplin in apoptotic cell death. The protein–ligand interactions using LigPlot displayed some similar interactions between cyclosaplin and peptide-based ligands, especially in case of protein kinases and a few apoptosis related proteins. Thus, the in silico analyses gave the insights of cyclosaplin being a potential apoptosis inducer and protein kinase inhibitor. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

15 pages, 11961 KB  
Article
Evaluation of Cyclosaplin Efficacy Using a Silk Based 3D Tumor Model
by Abheepsa Mishra, Sourav K. Mukhopadhyay and Satyahari Dey
Biomolecules 2019, 9(4), 123; https://doi.org/10.3390/biom9040123 - 28 Mar 2019
Cited by 12 | Viewed by 6239
Abstract
Development of novel anti-cancer peptides requires a rapid screening process which can be accelerated by using appropriate in vitro tumor models. Breast carcinoma tissue is a three-dimensional (3D) microenvironment, which contains a hypoxic center surrounded by dense proliferative tissue. Biochemical clues provided by [...] Read more.
Development of novel anti-cancer peptides requires a rapid screening process which can be accelerated by using appropriate in vitro tumor models. Breast carcinoma tissue is a three-dimensional (3D) microenvironment, which contains a hypoxic center surrounded by dense proliferative tissue. Biochemical clues provided by such a 3D cell mass cannot be recapitulated in conventional 2D culture systems. In this experiment, we evaluate the efficacy of the sandalwood peptide, cyclosaplin, on an established in vitro 3D silk breast cancer model using the invasive MDA-MB-231 cell line. The anti-proliferative effect of the peptide on the 3D silk tumor model is monitored by alamarBlue assay, with conventional 2D culture as control. The proliferation rate, glucose consumed, lactate dehydrogenase (LDH), and matrix metalloproteinase 9 (MMP-9) activity of human breast cancer cells are higher in 3D constructs compared to 2D. A higher concentration of drug is required to achieve 50% cell death in 3D culture than in 2D culture. The cyclosaplin treated MDA-MB-231 cells showed a significant decrease in MMP-9 activity in 3D constructs. Microscopic analysis revealed the formation of cell clusters evenly distributed in the scaffolds. The drug treated cells were less in number, smaller and showed unusual morphology. Overall, these findings indicate the role of cyclosaplin as a promising anti-cancer therapeutic. Full article
Show Figures

Graphical abstract

Back to TopTop