Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cyclopropane-containing metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4023 KB  
Article
Cyclopropane-Containing Specialized Metabolites from the Marine Cyanobacterium cf. Lyngbya sp.
by Nurul Farhana Salleh, Jiale Wang, Binu Kundukad, Emmanuel T. Oluwabusola, Delia Xin Yin Goh, Ma Yadanar Phyo, Jasmine Jie Lin Tong, Staffan Kjelleberg and Lik Tong Tan
Molecules 2023, 28(9), 3965; https://doi.org/10.3390/molecules28093965 - 8 May 2023
Cited by 11 | Viewed by 4303
Abstract
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of [...] Read more.
Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 2140 KB  
Review
The Norsesquiterpene Glycoside Ptaquiloside as a Poisonous, Carcinogenic Component of Certain Ferns
by János Vetter
Molecules 2022, 27(19), 6662; https://doi.org/10.3390/molecules27196662 - 7 Oct 2022
Cited by 9 | Viewed by 4307
Abstract
Previous studies related to the ptaquiloside molecule, a carcinogenic secondary metabolite known from the world of ferns, are summarised. Ptaquiloside (PTA) belongs to the group of norsesquiterpenes of the illudane type. The name illudane refers to the fungal taxa from which the first [...] Read more.
Previous studies related to the ptaquiloside molecule, a carcinogenic secondary metabolite known from the world of ferns, are summarised. Ptaquiloside (PTA) belongs to the group of norsesquiterpenes of the illudane type. The name illudane refers to the fungal taxa from which the first representatives of the molecular group were identified. Ptaquiloside occurs mainly in Pteridium fern species, although it is also known in other fern taxa. The species of the genus Pteridium are common, frequent invasive species on all continents, and PTA is formed in smaller or larger amounts in all organs of the affected species. The effects of PTA and of their derivatives on animals and humans are of great toxicological significance. Its basic chemical property is that the molecule can be transformed. First, with the loss of sugar moiety, ptaquilosine is formed, and then, under certain conditions, a dienone derivative (pteridienone) may arise. The latter can alkylate (through its cyclopropane groups) certain molecules, including DNA, in animal or human organisms. In this case, DNA adducts are formed, which can later have a carcinogenic effect through point mutations. The scope of the PTA is interdisciplinary in nature since, for example, molecules from plant biomass can enter the body of animals or humans in several ways (directly and indirectly). Due to its physico-chemical properties (excellent water solubility), PTA can get from the plant into the soil and then into different water layers. PTA molecules that enter the soil, but mainly water, undergo degradation (hydrolytic) processes, so it is very important to clarify the toxicological conditions of a given ecosystem and to estimate the possible risks caused by PTA. The toxicoses and diseases of the animal world (mainly for ruminant farm animals) caused by PTA are briefly described. The intake of PTA-containing plants as a feed source causes not only various syndromes but can also enter the milk (and meat) of animals. In connection with the toxicological safety of the food chain, it is important to investigate the transport of carcinogenic PTA metabolites between organisms in a reassuring manner and in detail. This is a global, interdisciplinary task. The present review aims to contribute to this. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

Back to TopTop