Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cyclic di-adenosine monophosphate (CDA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17560 KiB  
Article
Bioinformatics Analysis of Diadenylate Cyclase Regulation on Cyclic Diadenosine Monophosphate Biosynthesis in Exopolysaccharide Production by Leuconostoc mesenteroides DRP105
by Wenna Yu, Liansheng Yu, Tengxin Li, Ziwen Wang, Renpeng Du and Wenxiang Ping
Fermentation 2025, 11(4), 196; https://doi.org/10.3390/fermentation11040196 - 7 Apr 2025
Viewed by 729
Abstract
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits [...] Read more.
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits the wider application of EPS. EPS synthesis is regulated by cyclic diadenosine monophosphate (c-di-AMP), but the exact mechanism remains unclear. Dac and pde are c-di-AMP anabolic genes, gtfA, gtfB and gtfC are EPS synthesis gene clusters, among which gtfC was the key gene for EPS synthesis in Leuconostoc mesenteroides DRP105. In order to explore whether diadenylate cyclase (DAC) can catalyze the synthesis of c-di-AMP from ATP, the sequence of DAC was analyzed by bioinformatics based on the whole genome sequence. DAC was a CdaA type diadenylate cyclase containing the classical domain DisA_N and DGA and RHR motifs. The secondary structure was mainly composed of α-helices, and AlphaFold2 was used to model the 3D structure of the protein and evaluate the rationality of the DAC protein structure model. A total of 8 salt bridges, 21 hydrogen bonds and 221 non-bonded interactions were found between DAC and GtfC. Molecular docking simulations revealed ATP1 and ATP2 fully occupied the binding pocket of DAC and interacted directly with the binding site residues of DAC. The molecular dynamics simulations showed that the binding of DAC to ATP molecules was relatively stable. Gene and enzyme correlation analysis found that dac and gtfC gene expression were significantly positively correlated with DAC enzyme activity, c-di-AMP content and EPS production, and had no significant correlation with PDE enzyme activity responsible for c-di-AMP degradation. Bioinformatics analysis of the regulatory role of DAC in the synthesis of EPS by lactic acid bacteria was helpful to fully reveal the biosynthetic mechanism of EPS and provide theoretical basis for large-scale industrial production of EPS. Full article
Show Figures

Figure 1

14 pages, 2181 KiB  
Article
Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines
by Darío Lirussi, Sebastian Felix Weissmann, Thomas Ebensen, Ursula Nitsche-Gloy, Heiko B. G. Franz and Carlos A. Guzmán
Pharmaceutics 2021, 13(2), 188; https://doi.org/10.3390/pharmaceutics13020188 - 1 Feb 2021
Cited by 12 | Viewed by 3189
Abstract
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in [...] Read more.
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines. Full article
(This article belongs to the Special Issue Discovery and Evaluation of Novel Adjuvants for Vaccine Formulations)
Show Figures

Figure 1

21 pages, 3103 KiB  
Article
Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Streptococcus mitis
by Gro Herredsvela Rørvik, Krystyna Anna Liskiewicz, Fedor Kryuchkov, Ali-Oddin Naemi, Hans-Christian Aasheim, Fernanda C. Petersen, Thomas M. Küntziger and Roger Simm
Microorganisms 2020, 8(9), 1269; https://doi.org/10.3390/microorganisms8091269 - 20 Aug 2020
Cited by 12 | Viewed by 4623
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the [...] Read more.
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5′-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop