Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = curvic couplings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8844 KiB  
Article
Static and Dynamic Stress of the Combined Rotor with Curvic Couplings Considering the Rough Three-Dimensional Interface at Extreme Operating Conditions
by Yijun Yin, Xing Heng, Haibiao Zhang and Ailun Wang
Machines 2024, 12(10), 696; https://doi.org/10.3390/machines12100696 - 1 Oct 2024
Cited by 2 | Viewed by 1194
Abstract
The curvic coupling, as one of the common connecting structures for gas turbine combined rotors, is more susceptible to various dynamic and static loads at extreme operating conditions. But, traditional combined rotor models tend to neglect the influence of the connection structure, especially [...] Read more.
The curvic coupling, as one of the common connecting structures for gas turbine combined rotors, is more susceptible to various dynamic and static loads at extreme operating conditions. But, traditional combined rotor models tend to neglect the influence of the connection structure, especially failing to consider the contribution of the curvic coupling interfaces. To address this problem, this paper establishes a solid geometric model of the combined rotor with curvic couplings considering the rough three-dimensional interfaces. The effectiveness of the proposed model method is indirectly verified through the compression tests and modal tests. Subsequently, combined with finite element calculations, the mechanical properties of the rotor with curvic couplings considering the rough interface are analyzed under static and dynamic load conditions. The results indicate that the roughness of the interface significantly affects the deformation of the contact surface under static load, but its impact on the overall deformation of the rotor is relatively insignificant. The dynamic stress at the interface exhibits periodic variations at the resonance speed. At the maximum operating speed, the dynamic stress is influenced by the magnitude of imbalance. The aforementioned methods and conclusions provide a reference for the design research and engineering application of combined rotors. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

13 pages, 8380 KiB  
Article
Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications
by Chara Efstathiou, Ioanna Tsormpatzoglou and Nikolaos Tapoglou
Machines 2023, 11(8), 822; https://doi.org/10.3390/machines11080822 - 10 Aug 2023
Cited by 3 | Viewed by 5942
Abstract
Curvic couplings are used in applications demanding high positional accuracy and high torque transmission; therefore, improving their design and enhancing their load-carrying capacity is crucial. This study introduced the kinematic model Curvic3D, which was developed to produce the accurate geometry of both members [...] Read more.
Curvic couplings are used in applications demanding high positional accuracy and high torque transmission; therefore, improving their design and enhancing their load-carrying capacity is crucial. This study introduced the kinematic model Curvic3D, which was developed to produce the accurate geometry of both members of a curvic coupling using a CAD system. The model enabled the complete parametrization and customization of the coupling design using important geometric parameters. The couplings produced using Curvic3D were then imported into a finite element analysis model also developed as part of this study. A detailed analysis of the stresses developed on the teeth of the concave and convex parts provided information about the behavior of the coupling under different loading conditions. Finally, a series of geometric parameters, such as the number of teeth, the number of half pitches, the root fillet radius, and gable angle were examined as to their influence on the load-carrying capacity of the curvic coupling. The study concluded that all the examined parameters have a significant effect on the tooth flank and root area stresses. Full article
(This article belongs to the Special Issue High Performance and Hybrid Manufacturing Processes)
Show Figures

Figure 1

Back to TopTop