Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cumulative hatchability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5930 KB  
Article
rGO Decorated with ZnO Synthesized Using Clitoria ternatea Flower Extract—Characterization, In Vitro and In Vivo Biocompatibility, and Textile Dye Remediation
by Tanvitha Guttapalli, Naven Kumar RK, Harini RM and Koyeli Girigoswami
J. Compos. Sci. 2025, 9(9), 454; https://doi.org/10.3390/jcs9090454 - 25 Aug 2025
Viewed by 581
Abstract
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in [...] Read more.
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in the flower extract to form ZnO nanoparticles, enhance their properties through rGO integration, and evaluate their structural and photocatalytic characteristics. The nanocomposite was characterized using a comprehensive suite of techniques, including XRD, FTIR, UV–Vis spectroscopy, DLS, zeta potential, SEM, and EDAX. To assess the in vitro biocompatibility, an MTT assay was performed on the normal fibroblast cell line 3T3L1. The nanocomposite exhibited minimal cytotoxicity with over 86% cell viability at concentrations up to 320 μg/mL. Additionally, hemolysis assays demonstrated that the nanocomposite induced less than 5% hemolysis, indicating excellent hemocompatibility. In an in vivo evaluation, zebrafish embryos exhibited no deformities, and the cumulative hatchability was also not affected up to a dose of 50 μg/mL. The exploration of environmental remediation was studied using bromophenol dye degradation, which showed a 65% dye degradation within 30 min of exposure to the composite and sunlight. The outcome of the study showed successful formation of ZnO and its composite with rGO (CT-rGO-ZnO), exhibiting excellent biocompatibility and improved photocatalytic properties. The material demonstrates promise for applications in environmental remediation and energy-related fields. The environmentally friendly nature of the synthesis approach also makes it a valuable contribution toward sustainable nanotechnology. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Graphical abstract

17 pages, 3485 KB  
Article
Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos
by Gopikrishna Agraharam, Agnishwar Girigoswami and Koyeli Girigoswami
Chemistry 2022, 4(1), 1-17; https://doi.org/10.3390/chemistry4010001 - 31 Dec 2021
Cited by 42 | Viewed by 5214
Abstract
Flavonoids are natural polyphenolic compounds that mainly possess antioxidant properties due to more hydroxyl groups in their structure and play an important role in combatting many diseases. Myricetin is a flavonoid found in grapes, green tea, fruits, and vegetables and is not only [...] Read more.
Flavonoids are natural polyphenolic compounds that mainly possess antioxidant properties due to more hydroxyl groups in their structure and play an important role in combatting many diseases. Myricetin is a flavonoid found in grapes, green tea, fruits, and vegetables and is not only an antioxidant but also is a pro-oxidant. Myricetin is sparingly soluble in water and restricts its properties due to low bioavailability. The present study reports the liposomal nanoformulations of myricetin to improve its bioavailability with reduced pro-oxidant activity. The nanoformulated myricetin was characterized using different photophysical tools, such as dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). The effect of nanoencapsulated myricetin on the developing zebrafish embryo was studied in terms of microscopic observations, cumulative hatchability, and antioxidant activities, such as catalase, glutathione peroxidase, and superoxide dismutase, after treating the zebrafish embryo with standard oxidant hydrogen peroxide. The results obtained from the cumulative hatchability, developmental studies, and antioxidant assays indicated that the liposomal nanoformulation of myricetin had enhanced antioxidant activity, leading to defense against oxidative stress. The formulation was highly biocompatible, as evidenced by the cumulative hatching studies as well as microscopic observations. The positive effects of liposomal nanoformulation on zebrafish embryos can open an avenue for other researchers to carry out further related research and to check its activities in clinical studies and developmental studies. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products)
Show Figures

Graphical abstract

Back to TopTop