Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2068 KiB  
Article
Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50
by Haoyu Zhao, Junliang Zhu, Zhonghe Zhu, Lin Bo, Wenying Wang, Xingshuo Liu, Changcun Li and Degang Zhao
Crystals 2025, 15(7), 622; https://doi.org/10.3390/cryst15070622 - 4 Jul 2025
Viewed by 246
Abstract
Cubic phase SnSe-based materials have great potential in the field of thermoelectricity due to their reduced carrier scattering, increased band degeneracy, and ultra-low lattice thermal conductivity. Nevertheless, systematic studies on the influence of element doping on the thermoelectric properties of cubic SnSe-based materials [...] Read more.
Cubic phase SnSe-based materials have great potential in the field of thermoelectricity due to their reduced carrier scattering, increased band degeneracy, and ultra-low lattice thermal conductivity. Nevertheless, systematic studies on the influence of element doping on the thermoelectric properties of cubic SnSe-based materials are still relatively scarce. To enrich the research in this field, this work investigates the effects of Ge doping on the phase composition, electrical and thermal transport properties of cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50 thermoelectric materials. X-ray diffraction (XRD) analysis confirmed that the Ge-doped samples exhibited a single cubic phase structure, while scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) revealed a uniform distribution of elements within the samples. The results indicate that increasing the Ge doping content substantially enhances their electrical conductivity, albeit at the expense of elevated thermal conductivity. By optimizing the content of Ge-doping, the thermoelectric figure of merit (ZT) reached 0.74 at 750 K. Notably, while moderate Ge doping enhances electrical transport properties, excessive doping leads to a significant rise in thermal conductivity, ultimately constraining further thermoelectric performance gains. Full article
Show Figures

Figure 1

12 pages, 5123 KiB  
Article
Enhanced Thermoelectric Properties in Cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50 via MWCNTs Incorporation
by Zhewen Tan, Zhaowei Zeng, Junliang Zhu, Wenying Wang, Lin Bo, Xingshuo Liu, Changcun Li and Degang Zhao
Crystals 2025, 15(4), 365; https://doi.org/10.3390/cryst15040365 - 16 Apr 2025
Cited by 1 | Viewed by 440
Abstract
Cubic-phase SnSe possesses exceptional crystal structure symmetry while maintaining non-harmonic bond characteristics and ultra-low lattice thermal conductivity, exhibiting superior thermoelectric (TE) application potential compared to its orthorhombic counterpart. Despite recent advancements, systematic investigations on the combined effects of composite engineering strategies in optimizing [...] Read more.
Cubic-phase SnSe possesses exceptional crystal structure symmetry while maintaining non-harmonic bond characteristics and ultra-low lattice thermal conductivity, exhibiting superior thermoelectric (TE) application potential compared to its orthorhombic counterpart. Despite recent advancements, systematic investigations on the combined effects of composite engineering strategies in optimizing TE properties of cubic-phase SnSe-based materials remain scarce. In this study, multi-walled carbon nanotubes (MWCNTs) are incorporated into the cubic-phase Sn0.50Ag0.25Bi0.25Se0.50Te0.50 to regulate its TE performance through a combination of ultrasonic dispersion and rapid hot-pressing sintering. The introduced MWCNTs promote the formation of “high-speed channel” for carrier transport and serve as additional phonon-scattering centers, resulting in a synergistic optimization of electrical and thermal transport properties. A maximum ZT value of 0.85 is achieved in the prepared 1.50 wt.% MWCNTs/Sn0.50Ag0.25Bi0.25Se0.50Te0.50 sample at 750 K, representing a 21% improvement compared to the pristine Sn0.50Ag0.25Bi0.25Se0.50Te0.50 sample. This finding establishes a scalable nano-composite engineering paradigm for enhancing TE performance of cubic-phase SnSe-based materials. Full article
Show Figures

Figure 1

Back to TopTop