Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = crossclade antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3199 KiB  
Article
Challenges for Precise Subtyping and Sequencing of a H5N1 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Virus Isolated in Japan in the 2022–2023 Season Using Classical Serological and Molecular Methods
by James G. Komu, Hiep Dinh Nguyen, Yohei Takeda, Shinya Fukumoto, Kunitoshi Imai, Hitoshi Takemae, Tetsuya Mizutani and Haruko Ogawa
Viruses 2023, 15(11), 2274; https://doi.org/10.3390/v15112274 - 18 Nov 2023
Cited by 3 | Viewed by 2831
Abstract
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated H5N1 HPAIV strain using classical diagnostic methods. Oropharyngeal, conjunctival, and cloacal swabs collected from [...] Read more.
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated H5N1 HPAIV strain using classical diagnostic methods. Oropharyngeal, conjunctival, and cloacal swabs collected from a dead white-tailed eagle (Haliaeetus albicilla albicilla) were screened via real-time RT-PCR targeting the influenza A virus matrix (M) gene, followed by virus isolation. The hemagglutination inhibition test was applied in order to subtype and antigenically characterize the isolate using anti-A/duck/Hong Kong/820/80 (H5N3) reference serum or anti-H5N1 cross-clade monoclonal antibodies (mAbs). Sequencing using previously reported universal primers was attempted in order to analyze the full-length hemagglutinin (HA) gene. Oropharyngeal and conjunctival samples were positive for the M gene, and high hemagglutination titers were detected in inoculated eggs. However, its hemagglutination activity was not inhibited by the reference serum or mAbs. The antiserum to a recently isolated H5N1 clade 2.3.4.4b strain inhibited our isolate but not older strains. A homologous sequence in the previously reported forward primer and HA2 region in our isolate led to partial HA gene amplification. Finally, next-generation sequencing confirmed the isolate as H5N1 clade 2.3.4.4b HPAIV, with genetic similarity to H5N1 strains circulating in Japan since November 2021. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

14 pages, 2389 KiB  
Article
Assessment of Crosslinkers between Peptide Antigen and Carrier Protein for Fusion Peptide-Directed Vaccines against HIV-1
by Li Ou, Krishana Gulla, Andrea Biju, Daniel W. Biner, Tatsiana Bylund, Anita Changela, Steven J. Chen, Cheng-Yan Zheng, Nicole Cibelli, Angela R. Corrigan, Hongying Duan, Christopher A. Gonelli, Wing-Pui Kong, Cheng Cheng, Sijy O’Dell, Edward K. Sarfo, Andrew Shaddeau, Shuishu Wang, Alison Vinitsky, Yanhong Yang, Baoshan Zhang, Yaqiu Zhang, Richard A. Koup, Nicole A. Doria-Rose, Jason G. Gall, John R. Mascola and Peter D. Kwongadd Show full author list remove Hide full author list
Vaccines 2022, 10(11), 1916; https://doi.org/10.3390/vaccines10111916 - 12 Nov 2022
Cited by 1 | Viewed by 3692
Abstract
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the [...] Read more.
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results. Full article
Show Figures

Figure 1

29 pages, 4742 KiB  
Article
A Prime-Boost Immunization Strategy with Vaccinia Virus Expressing Novel gp120 Envelope Glycoprotein from a CRF02_AG Isolate Elicits Cross-Clade Tier 2 HIV-1 Neutralizing Antibodies
by Rita Calado, Joana Duarte, Pedro Borrego, José Maria Marcelino, Inês Bártolo, Francisco Martin, Inês Figueiredo, Silvia Almeida, Luís Graça, Jorge Vítor, Frederico Aires da Silva, Inês Dias, Belmira Carrapiço and Nuno Taveira
Vaccines 2020, 8(2), 171; https://doi.org/10.3390/vaccines8020171 - 7 Apr 2020
Cited by 6 | Viewed by 4475
Abstract
Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 [...] Read more.
Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 (gp120t) from HIV-1 clades CRF02_AG, H, J, B, and C and examined their immunogenicity in mice and rabbits. Mice primed with the recombinant Vaccinia viruses and boosted with the homologous gp120t or C2V3C3 polypeptides developed antibodies that bind potently to homologous and heterologous envelope glycoproteins. Notably, a subset of mice immunized with the CRF02_AG-based envelope immunogens developed a cross-reactive neutralizing response against tier 2 HIV-1 Env-pseudoviruses and primary isolates. Rabbits vaccinated with the CRF02_AG-based envelope immunogens also generated potent binding antibodies, and one animal elicited antibodies that neutralized almost all (13 of 16, 81.3%) tier 2 HIV-1 isolates tested. Overall, the results suggest that the novel CRF02_AG-based envelope immunogens and prime-boost immunization strategy elicit the type of immune responses required for a preventive HIV-1 vaccine. Full article
Show Figures

Graphical abstract

26 pages, 3241 KiB  
Review
Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease
by Aurelio Cafaro, Antonella Tripiciano, Orietta Picconi, Cecilia Sgadari, Sonia Moretti, Stefano Buttò, Paolo Monini and Barbara Ensoli
Vaccines 2019, 7(3), 99; https://doi.org/10.3390/vaccines7030099 - 26 Aug 2019
Cited by 17 | Viewed by 7622
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon [...] Read more.
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies. Full article
(This article belongs to the Special Issue Advances in Antibody-based HIV-1 Vaccine Development)
Show Figures

Figure 1

29 pages, 940 KiB  
Article
DNA-Encoded Flagellin Activates Toll-Like Receptor 5 (TLR5), Nod-like Receptor Family CARD Domain-Containing Protein 4 (NRLC4), and Acts as an Epidermal, Systemic, and Mucosal-Adjuvant
by Sanna Nyström, Andreas Bråve, Tina Falkeborn, Claudia Devito, Björn Rissiek, Daniel X. Johansson, Ulf Schröder, Satoshi Uematsu, Shizuo Akira, Jorma Hinkula and Steven E. Applequist
Vaccines 2013, 1(4), 415-443; https://doi.org/10.3390/vaccines1040415 - 25 Sep 2013
Cited by 12 | Viewed by 9518
Abstract
Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) [...] Read more.
Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) produces flagellin capable of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 (TLR5) and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4). To test the ability of pFliC(-gly) to act as an adjuvant we immunized mice with plasmid encoding secreted FliC (pFliC(-gly)) and plasmid encoding a model antigen (ovalbumin) by three different immunization routes representative of dermal, systemic, and mucosal tissues. By all three routes we observed increases in antigen-specific antibodies in serum as well as MHC Class I-dependent cellular immune responses when pFliC(-gly) adjuvant was added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent cellular immune responses after mucosal vaccination with pFliC(-gly). Humoral immune responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly). We also observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate multiple innate immune responses and function as an adjuvant to non-living/replicating DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in addition to dermal and systemic properties, demonstrates the potential of flagellin to be used with vaccines designed to be delivered by various routes. Full article
(This article belongs to the Special Issue DNA Vaccines)
Show Figures

Figure 1

Back to TopTop