Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cross-sectional scanning tunneling microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5829 KB  
Article
Mechanism Study and Tendency Judgement of Rockburst in Deep-Buried Underground Engineering
by Jiazhu Liu, Yongtao Gao, Fan Chen and Zhensheng Cao
Minerals 2022, 12(10), 1241; https://doi.org/10.3390/min12101241 - 29 Sep 2022
Cited by 3 | Viewed by 2085
Abstract
Rockburst is a type of dynamic instability failure phenomenon and frequently brings huge losses to underground engineering projects such as mines and tunnels. In order to explore rockburst mechanisms and predict rockbursts better, relying on the background of Wulaofeng deep-buried highway tunnel, in [...] Read more.
Rockburst is a type of dynamic instability failure phenomenon and frequently brings huge losses to underground engineering projects such as mines and tunnels. In order to explore rockburst mechanisms and predict rockbursts better, relying on the background of Wulaofeng deep-buried highway tunnel, in situ stress measurement was performed using new wireless devices, and mechanics tests of surrounding rock samples taken from different burial depths were carried out. The rockburst mechanism was explored from the microscopic perspective based on the analysis of scanning electron microscopy (SEM). Rockburst tendency was judged comprehensively by a tendency analysis, grade prediction and numerical simulation. The result showed that the mechanical parameters of granite rocks in the deep-buried section were larger than those in the entrance section, and the fractured morphology mainly comprised sheet and monolithic block, corresponding to transgranular fracture and intergranular fracture. Rocks with few types of mineral cementation, good crystallization and small particle size differences had better energy storage and release characteristics. There was little difference in the rockburst tendency of rocks with different buried depths, but there were obvious differences in the rockburst grade. In the deep-buried section of the tunnel, the rockburst grade was of a moderate–heavy level and the rockburst risk at the vault and right spandrel of the cross section was more severe, which was basically consistent with the situation at the tunnel site. This study can provide a theoretical basis for the prevention and control of rockbursts in Wulaofeng tunnel and other similar engineering projects. Full article
Show Figures

Graphical abstract

24 pages, 52248 KB  
Review
Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots
by Raja S. R. Gajjela and Paul M. Koenraad
Nanomaterials 2021, 11(1), 85; https://doi.org/10.3390/nano11010085 - 3 Jan 2021
Cited by 24 | Viewed by 6353
Abstract
The fundamental understanding of quantum dot (QD) growth mechanism is essential to improve QD based optoelectronic devices. The size, shape, composition, and density of the QDs strongly influence the optoelectronic properties of the QDs. In this article, we present a detailed review on [...] Read more.
The fundamental understanding of quantum dot (QD) growth mechanism is essential to improve QD based optoelectronic devices. The size, shape, composition, and density of the QDs strongly influence the optoelectronic properties of the QDs. In this article, we present a detailed review on atomic-scale characterization of droplet epitaxy quantum dots by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). We will discuss both strain-free GaAs/AlGaAs QDs and strained InAs/InP QDs grown by droplet epitaxy. The effects of various growth conditions on morphology and composition are presented. The efficiency of methods such as flushing technique is shown by comparing with conventional droplet epitaxy QDs to further gain control over QD height. A detailed characterization of etch pits in both QD systems is provided by X-STM and APT. This review presents an overview of detailed structural and compositional analysis that have assisted in improving the fabrication of QD based optoelectronic devices grown by droplet epitaxy. Full article
Show Figures

Figure 1

11 pages, 1892 KB  
Article
Design and Characterization of a Sharp GaAs/Zn(Mn)Se Heterovalent Interface: A Sub-Nanometer Scale View
by Davide F. Grossi, Sebastian Koelling, Pavel A. Yunin, Paul M. Koenraad, Grigory V. Klimko, Sergey V. Sorokin, Mikhail N. Drozdov, Sergey V. Ivanov, Alexey A. Toropov and Andrei Y. Silov
Nanomaterials 2020, 10(7), 1315; https://doi.org/10.3390/nano10071315 - 4 Jul 2020
Viewed by 2380
Abstract
The distribution of magnetic impurities (Mn) across a GaAs/Zn(Mn)Se heterovalent interface is investigated combining three experimental techniques: Cross-Section Scanning Tunnel Microscopy (X-STM), Atom Probe Tomography (APT), and Secondary Ions Mass Spectroscopy (SIMS). This unique combination allowed us to probe the Mn distribution with [...] Read more.
The distribution of magnetic impurities (Mn) across a GaAs/Zn(Mn)Se heterovalent interface is investigated combining three experimental techniques: Cross-Section Scanning Tunnel Microscopy (X-STM), Atom Probe Tomography (APT), and Secondary Ions Mass Spectroscopy (SIMS). This unique combination allowed us to probe the Mn distribution with excellent sensitivity and sub-nanometer resolution. Our results show that the diffusion of Mn impurities in GaAs is strongly suppressed; conversely, Mn atoms are subject to a substantial redistribution in the ZnSe layer, which is affected by the growth conditions and the presence of an annealing step. These results show that it is possible to fabricate a sharp interface between a magnetic semiconductor (Zn(Mn)Se) and high quality GaAs, with low dopant concentration and good optical properties. Full article
Show Figures

Figure 1

Back to TopTop