Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = cream demulsification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8139 KiB  
Article
Characterization and Demulsification of the Oil-Rich Emulsion from the Aqueous Extraction Process of Almond Flour
by Fernanda F. G. Dias, Neiva M. de Almeida, Thaiza S. P. de Souza, Ameer Y. Taha and Juliana M. L. N. de Moura Bell
Processes 2020, 8(10), 1228; https://doi.org/10.3390/pr8101228 - 1 Oct 2020
Cited by 18 | Viewed by 5221
Abstract
The aqueous extraction process (AEP) allows the concurrent extraction of oil and protein from almond flour without the use of harsh solvents. However, the majority of the oil extracted in the AEP is present in an emulsion that needs to be demulsified for [...] Read more.
The aqueous extraction process (AEP) allows the concurrent extraction of oil and protein from almond flour without the use of harsh solvents. However, the majority of the oil extracted in the AEP is present in an emulsion that needs to be demulsified for subsequent industrial utilization. The effects of scaling-up the AEP of almond flour from 0.7 to 7 L and the efficiency of enzymatic and chemical approaches to demulsify the cream were evaluated. The AEP was carried out at pH 9.0, solids-to-liquid ratio of 1:10, and constant stirring of 120 rpm at 50 °C. Oil extraction yields of 61.9% and protein extraction yields of 66.6% were achieved. At optimum conditions, enzymatic and chemical demulsification strategies led to a sevenfold increase (from 8 to 66%) in the oil recovery compared with the control. However, enzymatic demulsification resulted in significant changes in the physicochemical properties of the cream protein and faster demulsification (29% reduction in the incubation time and a small reduction in the demulsification temperature from 55 to 50 °C) compared with the chemical approach. Reduced cream stability after enzymatic demulsification could be attributed to the hydrolysis of the amandin α-unit and reduced protein hydrophobicity. Moreover, the fatty acid composition of the AEP oil obtained from both demulsification strategies was similar to the hexane extracted oil. Full article
Show Figures

Graphical abstract

Back to TopTop