Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = crAss-like virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8415 KB  
Article
Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts
by Igor V. Babkin, Valeria A. Fedorets, Artem Y. Tikunov, Ivan K. Baykov, Elizaveta A. Panina and Nina V. Tikunova
Int. J. Mol. Sci. 2025, 26(16), 7694; https://doi.org/10.3390/ijms26167694 - 8 Aug 2025
Viewed by 273
Abstract
Bacteriophages of the order Crassvirales are highly abundant and near-universal members of the human gut microbiome worldwide. Zeta crAss-like phages comprise a separate group in the order Crassvirales, and their genomes exhibit greater variability than genomes of crAss-like phages from other families within [...] Read more.
Bacteriophages of the order Crassvirales are highly abundant and near-universal members of the human gut microbiome worldwide. Zeta crAss-like phages comprise a separate group in the order Crassvirales, and their genomes exhibit greater variability than genomes of crAss-like phages from other families within the order. Zeta crAss-like phages employ multiple adaptation mechanisms, ensuring their survival despite host defenses and environmental pressure. Some Zeta crAss-like phages use alternative genetic coding and exploit diversity-generating retroelements (DGRs). These features suggest complex evolutionary relationships with their bacterial hosts, sustaining parasitic coexistence. Mutations in tail fiber proteins introduced by DGR can contribute to their adaptation to changes in the host cell surface and even expand the range of their hosts. In addition, the exchange of DNA polymerases via recombination makes it possible to overcome the bacterial anti-phage protection directed at these enzymes. Zeta crAss-like phages continuously adapt due to genetic diversification, host interaction tweaks, and counter-defense innovations, driving an evolutionary arms race with hosts. Based on the genome characteristics of the Zeta crAss-like phages, we propose to separate them into the Echekviridae family (“эчәк”—“intestines” in Tatar) following the tradition of using the word “intestines” in different languages, suggested previously. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

19 pages, 3858 KB  
Article
Flow Virometry in Wastewater Monitoring: Comparison of Virus-like Particles to Coliphage, Pepper Mild Mottle Virus, CrAssphage, and Tomato Brown Rugose Fruit Virus
by Melis M. Johnson, C. Winston Bess, Rachel Olson and Heather N. Bischel
Viruses 2025, 17(4), 575; https://doi.org/10.3390/v17040575 - 16 Apr 2025
Viewed by 973
Abstract
Flow virometry (FVM) offers a promising approach for monitoring viruses and virus-like particles (VLPs) in environmental samples. This study compares levels of non-specific VLPs across a wastewater treatment plant (WWTP) with levels of somatic coliphage, (F+) specific coliphage, Pepper Mild Mottle Virus (PMMoV), [...] Read more.
Flow virometry (FVM) offers a promising approach for monitoring viruses and virus-like particles (VLPs) in environmental samples. This study compares levels of non-specific VLPs across a wastewater treatment plant (WWTP) with levels of somatic coliphage, (F+) specific coliphage, Pepper Mild Mottle Virus (PMMoV), CrAssphage (CrAss), and Tomato Brown Rugose Fruit Virus (ToBRFV). All targets were quantified in influent, secondary-treated effluent, and tertiary-treated effluent at the University of California, Davis Wastewater Treatment Plant (UCDWWTP) over 11 weeks. We established an FVM-gating boundary for VLPs using bacteriophages T4 and ϕ6 as well as four phages isolated from wastewater. We then utilize T4 alongside three submicron beads as quality controls in the FVM assay. Coliphage was measured by standard plaque assays, and genome copies of PMMoV, CrAss, and ToBRFV were measured by digital droplet (dd)PCR. FVM results for wastewater revealed distinct microbial profiles at each treatment stage. However, correlations between VLPs and targeted viruses were poor. Trends for virus inactivation and removal, observed for targeted viruses during wastewater treatment, were consistent with expectations. Conversely, VLP counts were elevated in the WWTP effluent relative to the influent. Additional sampling revealed a decrease in VLP counts during the filtration treatment step following secondary treatment but a substantial increase in VLPs following ultraviolet disinfection. Defining application boundaries remain crucial to ensuring meaningful data interpretation as flow cytometry and virometry take on greater significance in water quality monitoring. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Figure 1

19 pages, 23754 KB  
Article
Genome Analysis of Epsilon CrAss-like Phages
by Igor V. Babkin, Artem Y. Tikunov, Ivan K. Baykov, Vera V. Morozova and Nina V. Tikunova
Viruses 2024, 16(4), 513; https://doi.org/10.3390/v16040513 - 27 Mar 2024
Cited by 3 | Viewed by 2232
Abstract
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative [...] Read more.
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

13 pages, 2453 KB  
Article
The Two-Faced Role of crAssphage Subfamilies in Obesity and Metabolic Syndrome: Between Good and Evil
by Melany Cervantes-Echeverría, Luigui Gallardo-Becerra, Fernanda Cornejo-Granados and Adrian Ochoa-Leyva
Genes 2023, 14(1), 139; https://doi.org/10.3390/genes14010139 - 4 Jan 2023
Cited by 12 | Viewed by 2592
Abstract
Viral metagenomic studies of the human gut microbiota have unraveled the differences in phage populations between health and disease, stimulating interest in phages’ role on bacterial ecosystem regulation. CrAssphage is a common and abundant family in the gut virome across human populations. Therefore, [...] Read more.
Viral metagenomic studies of the human gut microbiota have unraveled the differences in phage populations between health and disease, stimulating interest in phages’ role on bacterial ecosystem regulation. CrAssphage is a common and abundant family in the gut virome across human populations. Therefore, we explored its role in obesity (O) and obesity with metabolic syndrome (OMS) in a children’s cohort. We found a significantly decreased prevalence, diversity, and richness of the crAssphage Alpha subfamily in OMS mainly driven by a decrease in the Alpha_1 and Alpha_4 genera. On the contrary, there was a significant increase in the Beta subfamily in OMS, mainly driven by an increase in Beta_6. Additionally, an overabundance of the Delta_8 genus was observed in OMS. Notably, a decreased abundance of crAssphages was significantly correlated with the overabundance of Bacilli in the same group. The Bacilli class is a robust taxonomical biomarker of O and was also significantly abundant in our OMS cohort. Our results suggest that a loss of stability in the Alpha subfamily of crAssphages is associated with O and OMS. Contrary, an overabundance of the Delta subfamily was found in OMS. Our study advises the importance of considering the dual role (good and evil) of crAssphage subfamilies and their participation in conditions such as O, where we suggest that Alpha loss and Delta gain are associated with obese individuals. Full article
(This article belongs to the Special Issue Application of Next-Generation Sequencing in Clinical Virology)
Show Figures

Figure 1

Back to TopTop