Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = coseismic gravity changes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2204 KiB  
Communication
Coseismic Gravity Changes and Crustal Deformation Induced by the 2018 Fiji Deep-Focus Earthquake Observed by GRACE and GRACE-FO Satellites
by Yusaku Tanaka
Remote Sens. 2023, 15(2), 495; https://doi.org/10.3390/rs15020495 - 13 Jan 2023
Cited by 3 | Viewed by 2655
Abstract
Earthquakes at depths of ≥300 km are generally called deep-focus earthquakes. Only two deep-focus earthquakes with Mw 8.0 or more have occurred in this century—the 2013 Okhotsk earthquake (Mw 8.3) and the 2018 Fiji earthquake (Mw 8.2) on 19 August 2018. However, the [...] Read more.
Earthquakes at depths of ≥300 km are generally called deep-focus earthquakes. Only two deep-focus earthquakes with Mw 8.0 or more have occurred in this century—the 2013 Okhotsk earthquake (Mw 8.3) and the 2018 Fiji earthquake (Mw 8.2) on 19 August 2018. However, the 2018 Fiji earthquake was only reported on seismographs, and the related crustal deformations were not observed by the Global Navigation Satellite System because the observation network did not exist around the epicenter. This study analyzed the time series of gravity data observed by the Gravity Recovery And Climate Experiment (GRACE) and its successor, GRACE Follow-On, and detected the spatial distribution of coseismic gravity changes mainly due to crustal deformation by the 2018 Fiji earthquake. The results in this study were not consistent with the numerical calculation of gravity changes when using the fault parameters estimated by the data of seismic waves. Thus, numerical calculations were used to construct a uniform slip rectangle fault model to explain coseismic gravity changes and provide a spatial distribution map of crustal deformation. However, this fault model is only based on gravity changes; thus, new research combining satellite gravimetry and seismic wave data will be necessary in the future. Full article
Show Figures

Graphical abstract

18 pages, 4513 KiB  
Article
Evaluation of GRACE/GRACE Follow-On Time-Variable Gravity Field Models for Earthquake Detection above Mw8.0s in Spectral Domain
by Ming Xu, Xiaoyun Wan, Runjing Chen, Yunlong Wu and Wenbing Wang
Remote Sens. 2021, 13(16), 3075; https://doi.org/10.3390/rs13163075 - 5 Aug 2021
Cited by 3 | Viewed by 2907
Abstract
This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The [...] Read more.
This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The results show that the precision of GFO monthly models is approximately 38% higher than that of the GRACE monthly model and all the detected earthquakes have signal-to-noise ratio (SNR) larger than 1.8. The study concludes that the precision of the time-variable gravity fields should be improved by at least one order in order to detect all the coseismic gravity signals of earthquakes with M ≥ 8.0. By comparing the spectral intensity distribution of the GFO stack errors and the 2019 Mw8.0 Peru earthquake, it is found that the precision of the current GFO monthly model meets the requirement to detect the coseismic signal of the earthquake. However, due to the limited time length of the observations and the interference of the hydrological signal, the coseismic signals are, in practice, difficult to extract currently. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 9532 KiB  
Article
Co-Seismic and Post-Seismic Temporal and Spatial Gravity Changes of the 2010 Mw 8.8 Maule Chile Earthquake Observed by GRACE and GRACE Follow-on
by Wei Qu, Yaxi Han, Zhong Lu, Dongdong An, Qin Zhang and Yuan Gao
Remote Sens. 2020, 12(17), 2768; https://doi.org/10.3390/rs12172768 - 26 Aug 2020
Cited by 13 | Viewed by 4220
Abstract
The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on (GRACE-FO) satellites are important for studying regional gravitational field changes caused by strong earthquakes. In this study, we chose Chile, one of Earth’s most active seismic zones to explore the co-seismic and post-seismic [...] Read more.
The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on (GRACE-FO) satellites are important for studying regional gravitational field changes caused by strong earthquakes. In this study, we chose Chile, one of Earth’s most active seismic zones to explore the co-seismic and post-seismic gravitational field changes of the 2010 Mw 8.8 Maule earthquake based on longer-term GRACE and the newest GRACE-FO data. We calculated the first-order co-seismic gravity gradient changes (GGCs) and probed the geodynamic characteristics of the earthquake. The earthquake caused significant positive gravity change on the footwall and negative gravity changes on the hanging wall of the seismogenic fault. The time series of gravity changes at typical points all clearly revealed an abrupt change caused by the earthquake. The first-order northern co-seismic GGCs had a strong suppressive effect on the north-south strip error. GRACE-FO results showed that the latest post-seismic gravity changes had obvious inherited development characteristics, and that the west coast of Chile maybe still affected by the post-seismic effect. The cumulative gravity changes simulated based on viscoelastic dislocation model is approximately consistent with the longer-term GRACE and the newest GRACE-FO observations. Our results provide important reference for understanding temporal and spatial gravity variations associated with the co-seismic and post-seismic processes of the 2010 Maule earthquake. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Graphical abstract

19 pages, 11120 KiB  
Article
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake
by Xinyu Xu, Hao Ding, Yongqi Zhao, Jin Li and Minzhang Hu
Remote Sens. 2019, 11(11), 1295; https://doi.org/10.3390/rs11111295 - 30 May 2019
Cited by 2 | Viewed by 3915
Abstract
In contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient [...] Read more.
In contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient (SGG) mission to estimate the coseismic gravity and gravity gradient changes caused by the 2011 Tohoku-Oki Mw 9.0 earthquake. We first construct two global gravity field models up to degree and order 220, before and after the earthquake, based on the least-squares method, with a bandpass Auto Regression Moving Average (ARMA) filter applied to the SGG data along the orbit. In addition, to reduce the influences of colored noise in the SGG data and the polar gap problem on the recovered model, we propose a tailored spherical harmonic (TSH) approach, which only uses the spherical harmonic (SH) coefficients with the degree range 30–95 to compute the coseismic gravity changes in the spatial domain. Then, both the results from the GOCE observations and the GRACE temporal gravity field models (with the same TSH degrees and orders) are simultaneously compared with the forward-modeled signals that are estimated based on the fault slip model of the earthquake event. Although there are considerable misfits between GOCE-derived and modeled gravity gradient changes (ΔVxx, ΔVyy, ΔVzz, and ΔVxz), we find analogous spatial patterns and a significant change (greater than 3σ) in gravity gradients before and after the earthquake. Moreover, we estimate the radial gravity gradient changes from the GOCE-derived monthly time-variable gravity field models before and after the earthquake, whose amplitudes are at a level over three times that of their corresponding uncertainties, and are thus significant. Additionally, the results show that the recovered coseismic gravity signals in the west-to-east direction from GOCE are closer to the modeled signals than those from GRACE in the TSH degree range 30–95. This indicates that the GOCE-derived gravity models might be used as additional observations to infer/explain some time-variable geophysical signals of interest. Full article
(This article belongs to the Special Issue Remote Sensing by Satellite Gravimetry)
Show Figures

Graphical abstract

12 pages, 10833 KiB  
Article
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake
by Guoqing Zhang, Wenbin Shen, Changyi Xu and Yiqing Zhu
Sensors 2016, 16(9), 1410; https://doi.org/10.3390/s16091410 - 1 Sep 2016
Cited by 7 | Viewed by 5361
Abstract
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square [...] Read more.
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop