Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = copper tungstate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4263 KiB  
Review
Emergent CuWO4 Photoanodes for Solar Fuel Production: Recent Progress and Perspectives
by Jin Uk Lee, Jin Hyun Kim and Jae Sung Lee
Catalysts 2023, 13(11), 1408; https://doi.org/10.3390/catal13111408 - 30 Oct 2023
Cited by 3 | Viewed by 2313
Abstract
Solar fuel production using a photoelectrochemical (PEC) cell is considered as an effective solution to address the climate change caused by CO2 emissions, as well as the ever-growing global demand for energy. Like all other solar energy utilization technologies, the PEC cell [...] Read more.
Solar fuel production using a photoelectrochemical (PEC) cell is considered as an effective solution to address the climate change caused by CO2 emissions, as well as the ever-growing global demand for energy. Like all other solar energy utilization technologies, the PEC cell requires a light absorber that can efficiently convert photons into charge carriers, which are eventually converted into chemical energy. The light absorber used as a photoelectrode determines the most important factors for PEC technology—efficiency, stability, and the cost of the system. Despite intensive research in the last two decades, there is no ideal material that satisfies all these criteria to the level that makes this technology practical. Thus, further exploration and development of the photoelectode materials are necessary, especially by finding a new promising semiconductor material with a suitable band gap and photoelectronic properties. CuWO4 (n-type, Eg = 2.3 eV) is one of those emerging materials that has favorable intrinsic properties for photo(electro)catalytic water oxidation, yet it has been receiving less attention than it deserves. Nonetheless, valuable pioneering studies have been reported for this material, proving its potential to become a significant option as a photoanode material for PEC cells. Herein, we review recent progress of CuWO4-based photoelectrodes; discuss the material’s optoelectronic properties, synthesis methods, and PEC characteristics; and finally provide perspective of its applications as a photoelectrode for PEC solar fuel production. Full article
(This article belongs to the Special Issue Theme Issue in Honor of Prof. Dr. Jae Sung Lee)
Show Figures

Graphical abstract

15 pages, 13430 KiB  
Article
The Memristive Properties and Spike Timing-Dependent Plasticity in Electrodeposited Copper Tungstates and Molybdates
by Dawid Przyczyna, Krzysztof Mech, Ewelina Kowalewska, Mateusz Marzec, Tomasz Mazur, Piotr Zawal and Konrad Szaciłowski
Materials 2023, 16(20), 6675; https://doi.org/10.3390/ma16206675 - 13 Oct 2023
Cited by 3 | Viewed by 1523
Abstract
Memristors possess non-volatile memory, adjusting their electrical resistance to the current that flows through them and allowing switching between high and low conducting states. This technology could find applications in fields such as IT, consumer electronics, computing, sensors, and medicine. In this paper, [...] Read more.
Memristors possess non-volatile memory, adjusting their electrical resistance to the current that flows through them and allowing switching between high and low conducting states. This technology could find applications in fields such as IT, consumer electronics, computing, sensors, and medicine. In this paper, we report successful electrodeposition of thin-film materials consisting of copper tungstate and copper molybdate (CuWO4 and Cu3Mo2O9), which showed notable memristive properties. Material characterisation was performed with techniques such as XRD, XPS, and SEM. The electrodeposited materials exhibited the ability to switch between low and high resistive states during varied cyclic scans and short-term impulses. The retention time of these switched states was also explored. Using these materials, the effects seen in biological systems, specifically spike timing-dependent plasticity, were simulated, being based on analogue operation of the memristors to achieve multiple conductivity states. Bio-inspired simulations performed directly on the material could possibly offer energy and time savings for classical computations. Memristors could be crucial for the advancement of high-efficiency, low-energy neuromorphic electronic devices and technologies in the future. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

12 pages, 6637 KiB  
Article
Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations
by Roman A. Shishkin, Alexey Yu. Suntsov and Mikhael O. Kalinkin
Ceramics 2023, 6(2), 968-979; https://doi.org/10.3390/ceramics6020057 - 11 Apr 2023
Viewed by 1918
Abstract
The rock-salt ordered A2CuWO6 (A = Sr, Ba) with I4/m space group and disordered SrCu0.5M0.5O3−δ (M = Ta, Nb) with Pm3m space group perovskites were successfully obtained via a solid-state reaction [...] Read more.
The rock-salt ordered A2CuWO6 (A = Sr, Ba) with I4/m space group and disordered SrCu0.5M0.5O3−δ (M = Ta, Nb) with Pm3m space group perovskites were successfully obtained via a solid-state reaction route. Heat treatment of Ba2CuWO6 over 900 °C in air leads to phase decomposition to the barium tungstate and copper oxide. Thermogravimetric measurements reveal the strong stoichiometric oxygen content and specific oxygen capacity (ΔWo) exceeding 2.5% for Ba2CuWO6. At the same time, oxygen content reveals Cu3+ content in SrCu0.5Ta0.5O3−δ. Under the following reoxidation of Ba2CuWO6, step-like behavior in weight changes was observed, corresponding to possible Cu+ ion formation at 900 °C; in contrast, no similar effect was detected for M5+ cations. The yellow color of Ba2CuWO6 enables to measure the band gap 2.59 eV. SrCu0.5Ta0.5O3−δ due to high oxygen valance concentration has a low thermal conductivity 1.28 W·m−1·K−1 in the temperature range 25–400 °C. Full article
Show Figures

Figure 1

12 pages, 2657 KiB  
Article
Hydrothermal Co-Crystallization of Novel Copper Tungstate-Strontium Titanate Crystal Composite for Enhanced Photocatalytic Activity and Increased Electron–Hole Recombination Time
by Áron Ágoston and László Janovák
Catalysts 2023, 13(2), 287; https://doi.org/10.3390/catal13020287 - 27 Jan 2023
Viewed by 2056
Abstract
The development of catalysts continues to have a significant influence on science today since we can utilize them to efficiently destroy some contaminants. A study in this field is justified because there is a dearth of comprehensive literature on the creation of SrTiO [...] Read more.
The development of catalysts continues to have a significant influence on science today since we can utilize them to efficiently destroy some contaminants. A study in this field is justified because there is a dearth of comprehensive literature on the creation of SrTiO3-based photocatalysts. Related to this topic, here we report the facile preparation of a structure-modified SrTiO3 photocatalyst, by incorporating CuWO4. Within the case of the CuWO4-modified samples (0.5–3 wt% nominal CuWO4 content), the photo-oxidation of phenol, as a contaminant, was more than two times higher than the initial SrTiO3. However, the photocatalytic activity does not change linearly with increasing CuWO4 content, and the CWS2.5 (2.5 wt% nominal CuWO4 content and 4.25 wt% measured content) has the highest photo-activity under the applied conditions. The reason for the better activity was the increased recombination time of charge separation on the catalyst surface. Slower recombination can result in more water being oxidized to hydroxyl radicals, leading to the faster decomposition of the phenol. Full article
Show Figures

Figure 1

15 pages, 1940 KiB  
Article
Enhanced Bioconversion of Methane to Biodiesel by Methylosarcina sp. LC-4
by Nivedita Sana, Dali Naidu Arnepalli and Chandraraj Krishnan
Sustainability 2023, 15(1), 505; https://doi.org/10.3390/su15010505 - 28 Dec 2022
Cited by 4 | Viewed by 2941
Abstract
The conversion of methane into liquid biofuels using methane-consuming bacteria, known as methanotrophs, contributes to sustainable development, as it mitigates the problem of climate change caused by greenhouse gases and aids in producing cleaner and renewable energy. In the present research, an efficient [...] Read more.
The conversion of methane into liquid biofuels using methane-consuming bacteria, known as methanotrophs, contributes to sustainable development, as it mitigates the problem of climate change caused by greenhouse gases and aids in producing cleaner and renewable energy. In the present research, an efficient methanotroph, Methylosarcina sp. LC-4, was studied as a prospective organism for biodiesel production using methane. The methane uptake rate by the organism was enhanced 1.6 times and 2.35 times by supplementing LC-4 with micronutrients, such as copper and tungstate, respectively. This unique ability of the isolated organism enables the deployment of methanotrophs-based processes in various industrial applications. A Plackett–Burman statistical (PBD) design was used to quantify the role of the micronutrients and other media components present in the nitrate minimal salt media (NMS) in biomass and fatty acid methyl esters (FAME) yields. Nitrate, phosphate, and tungstate had a positive effect, whereas copper, magnesium, and salinity had a negative effect. The modified NMS media, formulated according to the results from the PBD analysis, increased the FAME yield (mg/L) by 85.7%, with the FAME content of 13 ± 1% (w/w) among the highest reported in methanotrophs. The obtained FAME consisted majorly (~90%) of C14–C18 saturated and monounsaturated fatty acids, making it suitable for use as biodiesel. Full article
Show Figures

Figure 1

12 pages, 4808 KiB  
Article
Kinetic Highlights of the Reduction of Silver Tungstate by Mg + C Combined Reducer
by Marieta Zakaryan, Khachik Nazaretyan, Sofiya Aydinyan and Suren Kharatyan
Metals 2022, 12(6), 1000; https://doi.org/10.3390/met12061000 - 10 Jun 2022
Cited by 1 | Viewed by 2194
Abstract
The programmed reduction of tungstates and molybdates may yield the production of an intimate mixture of metals, pseudo-alloys or composite powders. As an extension of the study of obtaining powders of tungsten-copper, molybdenum-copper and tungsten-nickel from their respective salts, in the present study [...] Read more.
The programmed reduction of tungstates and molybdates may yield the production of an intimate mixture of metals, pseudo-alloys or composite powders. As an extension of the study of obtaining powders of tungsten-copper, molybdenum-copper and tungsten-nickel from their respective salts, in the present study the reduction of silver tungstate was performed. Considering the extreme conditions for the synthesis of W-Ag alloys in the combustion wave and the limited toolkit for the study of the associated reduction mechanism, the interaction in the Ag2WO4-Mg-C system was modeled at high heating rates closer to the heating rates of reagents in the combustion wave, namely by the high-speed temperature scanner (HSTS). For the effective study of the interaction mechanism and calculation of the kinetic parameters of the individual stages, the heating rate of the reagents was changed in a wide range (from 100 to 1200 °C min−1). The interaction scheme and the sequence of the reactions along with their starting temperatures were deduced; the nature of intermediates formed during the reduction process and the microstructure evolution were monitored. Full article
Show Figures

Figure 1

16 pages, 5683 KiB  
Article
Three-Layer PdO/CuWO4/CuO System for Hydrogen Gas Sensing with Reduced Humidity Interference
by Nirmal Kumar, Stanislav Haviar and Petr Zeman
Nanomaterials 2021, 11(12), 3456; https://doi.org/10.3390/nano11123456 - 20 Dec 2021
Cited by 10 | Viewed by 3319
Abstract
The growing hydrogen industry is stimulating an ongoing search for new materials not only for hydrogen production or storage but also for hydrogen sensing. These materials have to be sensitive to hydrogen, but additionally, their synthesis should be compatible with the microcircuit industry [...] Read more.
The growing hydrogen industry is stimulating an ongoing search for new materials not only for hydrogen production or storage but also for hydrogen sensing. These materials have to be sensitive to hydrogen, but additionally, their synthesis should be compatible with the microcircuit industry to enable seamless integration into various devices. In addition, the interference of air humidity remains an issue for hydrogen sensing materials. We approach these challenges using conventional reactive sputter deposition. Using three consequential processes, we synthesized multilayer structures. A basic two-layer system composed of a base layer of cupric oxide (CuO) overlayered with a nanostructured copper tungstate (CuWO4) exhibits higher sensitivity than individual materials. This is explained by the formation of microscopic heterojunctions. The addition of a third layer of palladium oxide (PdO) in forms of thin film and particles resulted in a reduction in humidity interference. As a result, a sensing three-layer system working at 150 °C with an equalized response in dry/humid air was developed. Full article
(This article belongs to the Special Issue Nanostructured Materials for Gas Sensor Applications)
Show Figures

Figure 1

19 pages, 4475 KiB  
Article
Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption
by Bushra Fatima, Basem Al Alwan, Sharf Ilahi Siddiqui, Rabia Ahmad, Mohammed Almesfer, Manoj Kumar Khanna, Ruby Mishra, Rangnath Ravi and Seungdae Oh
Water 2021, 13(22), 3287; https://doi.org/10.3390/w13223287 - 20 Nov 2021
Cited by 10 | Viewed by 2636
Abstract
This study reports the synthesis of copper–zinc binary oxide coupled cadmium tungstate through a simple bio-precipitation method followed by calcination at 600 °C and its adsorption application. The characterization analysis reveals that the prepared composite has low particles size (nano-range), high porosity, and [...] Read more.
This study reports the synthesis of copper–zinc binary oxide coupled cadmium tungstate through a simple bio-precipitation method followed by calcination at 600 °C and its adsorption application. The characterization analysis reveals that the prepared composite has low particles size (nano-range), high porosity, and functional groups on the surface. The calcination of sample at 600 °C causes some essential function groups to disappear on the surface. Prepared composite was found to be effective adsorptive material to treat Congo red dye in aqueous solution. 2.5 g L−1 dose of adsorbent could remove more than 99% Congo red dye from 10 mg L−1 solution and more than 80% Congo red dye from 60 mg L−1 aqueous solution. The maximum adsorption capacity of present adsorbent was calculated to be 19.6 mg Congo red per gram of adsorbent. Isotherms analysis suggested a physio-chemical adsorption process. Thermodynamic analysis revealed a exothermic and feasible adsorption process. Adsorption rate was well explained by pseudo second order kinetics. The rate determining step was intra-particle diffusion evaluated from the Weber-Morris plot. To assess the adsorption performance of present adsorbent for Congo red dye the partition coefficient and adsorption equilibrium capacity were compared with other adsorbents. The partition coefficient and adsorption equilibrium values for 10 mg L−1 aqueous solution were found to be approximately 83.3 mg g−1 µM−1 and 4.0 mg g−1 at 30 °C and 7.0 pH using 2.5 g L−1 adsorbent. The value of partition coefficient was found to be higher than previous reported zinc oxide coupled cadmium tungstate having partition coefficient = as 21.4 mg g−1 µM−1 at 30 °C and 7.0 pH using 2.0 g L−1 adsorbent. These results suggested that present adsorption technology is efficient for wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

1 pages, 174 KiB  
Abstract
Tungsten Oxide Based Hydrogen Gas Sensor Prepared by Advanced Magnetron Sputtering
by Nirmal Kumar, Stanislav Haviar, Jiří Rezek, Jiří Čapek and Pavel Baroch
Eng. Proc. 2021, 6(1), 5; https://doi.org/10.3390/I3S2021Dresden-10154 - 18 May 2021
Viewed by 1018
Abstract
In this study, we demonstrate the advantages of two advanced sputtering techniques for the preparation of a thin-film conductometric gas sensor. We combined tungsten oxide (WO3) thin films with other materials to achieve enhanced sensorial behavior towards hydrogen. Thin films of [...] Read more.
In this study, we demonstrate the advantages of two advanced sputtering techniques for the preparation of a thin-film conductometric gas sensor. We combined tungsten oxide (WO3) thin films with other materials to achieve enhanced sensorial behavior towards hydrogen. Thin films of WO3 were prepared using the DC and HiPIMS technique, which allowed us to tune the phase composition and crystallinity of the oxide by changing the deposition parameters. The second material was then added on-top of these films. We used the copper tungstate CuWO4 in the form of nano-islands deposited by reactive rf sputtering and Pd particles formed during conventional dc sputtering. The specimens were tested for their response to a time-varied hydrogen concentration in synthetic air at various temperatures. The sensitivity and response time were evaluated. The performance of the individual films is presented as well as the details of the synthesis. Advanced magnetron techniques (such as HiPIMS) allowed us to tune the property of the film to improve its sensorial behavior. The method is compatible with the silicon electronics industry and consists of a few steps that do not require any wet technique, and the films can be used in an as-deposited state. Therefore, sensorial nanostructured materials prepared using magnetron sputtering are very suitable for use in miniaturized electronic devices. Full article
(This article belongs to the Proceedings of The 8th International Symposium on Sensor Science)
3 pages, 615 KiB  
Proceeding Paper
Nanostructured Materials Based on Thin Films and Nanoclusters for Hydrogen Gas Sensing
by Stanislav Haviar, Nirmal Kumar, Šárka Batková and Jiří Čapek
Proceedings 2020, 56(1), 38; https://doi.org/10.3390/proceedings2020056038 - 5 Jan 2021
Cited by 2 | Viewed by 1362
Abstract
In this paper, we present two approaches to synthesize nanostructured metal oxide semiconductors in a form of multi-layer thin films later assembled as a conductometric gas-sensors. The first approach produces a combination of thin solid film of tungsten trioxide (WO3) with [...] Read more.
In this paper, we present two approaches to synthesize nanostructured metal oxide semiconductors in a form of multi-layer thin films later assembled as a conductometric gas-sensors. The first approach produces a combination of thin solid film of tungsten trioxide (WO3) with nanoclusters of cupric oxide (CuO) prepared by a magnetron-based gas aggregation cluster source (GAS). The second method is a two-step reactive magnetron sputtering forming a nanostructured copper tungstate (CuWO4) on-top of a WO3 film. Both methods lead to synthesis of nanosized hetero-junctions. These greatly improve the sensorial response to hydrogen in comparison with a WO3 thin film alone. Full article
Show Figures

Figure 1

9 pages, 2889 KiB  
Article
Network Structured CuWO4/BiVO4/Co-Pi Nanocomposite for Solar Water Splitting
by Ben Peng, Mengyang Xia, Chao Li, Changshen Yue and Peng Diao
Catalysts 2018, 8(12), 663; https://doi.org/10.3390/catal8120663 - 17 Dec 2018
Cited by 17 | Viewed by 6547
Abstract
A network structured CuWO4/BiVO4 nanocomposite with a high specific surface area was prepared from CuWO4 nanoflake (NF) arrays via a method that combined drop-casting and thermal annealing. The obtained CuWO4/BiVO4 exhibited high catalytic activity toward photoelectrochemical [...] Read more.
A network structured CuWO4/BiVO4 nanocomposite with a high specific surface area was prepared from CuWO4 nanoflake (NF) arrays via a method that combined drop-casting and thermal annealing. The obtained CuWO4/BiVO4 exhibited high catalytic activity toward photoelectrochemical (PEC) water oxidation. When cobalt phosphate (Co-Pi) was coupled with CuWO4/BiVO4, the activity of the resulting CuWO4/BiVO4/Co-Pi composite for the oxygen evolution reaction (OER) was further improved. The photocurrent density (Jph) for OER on CuWO4/BiVO4/Co-Pi is among the highest reported on a CuWO4-based photoanode in a neutral solution. The high activity for the PEC OER was attributed to the high specific surface area of the composite, the formation of a CuWO4/BiVO4 heterojunction that accelerated electron–hole separation, and the coupling of the Co-Pi co-catalyst with CuWO4/BiVO4, which improved the charge transfer rate across composite/solution interface. Full article
(This article belongs to the Special Issue Photocatalytic Nanocomposite Materials)
Show Figures

Graphical abstract

9 pages, 403 KiB  
Article
The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans
by Shivani Kalia, Jordan Trager, Oliver C. Sitton and Melanie R. Mormile
Life 2016, 6(3), 35; https://doi.org/10.3390/life6030035 - 20 Aug 2016
Cited by 1 | Viewed by 5758
Abstract
In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this [...] Read more.
In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, possesses the metabolic capability to convert glycerol into 1,3-propanediol, a valuable commodity compound, without the need for salt dilution or adjusting pH when grown on this waste. Experiments were performed with different combinations of 24 medium components to determine their impact on the production of 1,3-propanediol by using a fractional factorial design. Tested medium components were selected based on data from the organism’s genome. Analysis of HPLC data revealed enhanced production of 1,3-propanediol with additional glycerol, pH, vitamin B12, ammonium ions, sodium sulfide, cysteine, iron, and cobalt. However, other selected components; nitrate ions, phosphate ions, sulfate ions, sodium:potassium ratio, chloride, calcium, magnesium, silicon, manganese, zinc, borate, nickel, molybdenum, tungstate, copper and aluminum, did not enhance 1,3-propanediol production. The use of a fractional factorial design enabled the quick and efficient assessment of the impact of 24 different medium components on 1,3-propanediol production from glycerol from a haloalkaliphilic bacterium. Full article
Show Figures

Figure 1

13 pages, 2480 KiB  
Article
Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation
by Danping Wang, Prince Saurabh Bassi, Huan Qi, Xin Zhao, Gurudayal, Lydia Helena Wong, Rong Xu, Thirumany Sritharan and Zhong Chen
Materials 2016, 9(5), 348; https://doi.org/10.3390/ma9050348 - 7 May 2016
Cited by 46 | Viewed by 9341
Abstract
Porous tungsten oxide/copper tungstate (WO3/CuWO4) composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO3)2) solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. [...] Read more.
Porous tungsten oxide/copper tungstate (WO3/CuWO4) composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO3)2) solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407) was loaded onto WO3 substrates by programmed dip coating, followed by heat treatment in air at 550 °C. The Cu2+ reacted with the WO3 substrate to form the CuWO4 compound. The composite WO3/CuWO4 thin films demonstrated improved photoelectrochemical (PEC) performance over WO3 and CuWO4 single phase photoanodes. The factors of light absorption and charge separation efficiency of the composite and two single phase films were investigated to understand the reasons for the PEC enhancement of WO3/CuWO4 composite thin films. The photocurrent was generated from water splitting as confirmed by hydrogen and oxygen gas evolution, and Faradic efficiency was calculated based on the amount of H2 produced. This work provides a low-cost and controllable method to prepare WO3-metal tungstate composite thin films, and also helps to deepen the understanding of charge transfer in WO3/CuWO4 heterojunction. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Conversion Materials)
Show Figures

Graphical abstract

Back to TopTop