Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = copper (II) hydroxide nitrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6497 KiB  
Article
Layered Copper Hydroxide Salts as Catalyst for the “Click” Reaction and Their Application in Methyl Orange Photocatalytic Discoloration
by Rafael Marangoni, Rafael E. Carvalho, Monielly V. Machado, Vanessa B. Dos Santos, Sumbal Saba, Giancarlo V. Botteselle and Jamal Rafique
Catalysts 2023, 13(2), 426; https://doi.org/10.3390/catal13020426 - 16 Feb 2023
Cited by 6 | Viewed by 3407
Abstract
The 1,2,3-triazoles are an important class of organic compounds that are found in a variety of biologically active compounds. The most usual and efficient methodology to synthetize these compounds is the Copper-catalyzed Azide–Alkyne Cycloaddition (CuAAC), preferably by use of click chemistry principles. Therefore, [...] Read more.
The 1,2,3-triazoles are an important class of organic compounds that are found in a variety of biologically active compounds. The most usual and efficient methodology to synthetize these compounds is the Copper-catalyzed Azide–Alkyne Cycloaddition (CuAAC), preferably by use of click chemistry principles. Therefore, the development of simple, robust, easily accessible and efficient materials as catalysts for this kind of reaction is highly desirable. In this sense, layered hydroxide salts (LHS) emerge as an interesting alternative for the click reaction. Thus, we describe herein the preparation and characterization of copper (II) layered hydroxide salts and their application as catalysts for the CuAAC reaction under solvent-free conditions. This synthetic methodology of CuAAC reaction is attractive as it follows several concepts of green chemistry, such as being easy to perform, allowing purification without chromatographic column, the process forming no sub-products, affording the desired 1,2,3-traizoles in the specific 1,4-disubstituted position in high yield, and having a short reaction time. Moreover, the photocatalysis for the degradation of methyl orange was also highly efficient using the same catalyst. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

14 pages, 1249 KiB  
Article
M(II)Al4 Type Layered Double Hydroxides—Preparation Using Mechanochemical Route, Structural Characterization and Catalytic Application
by Márton Szabados, Adél Anna Ádám, Zsolt Kása, Kornélia Baán, Róbert Mucsi, András Sápi, Zoltán Kónya, Ákos Kukovecz and Pál Sipos
Materials 2021, 14(17), 4880; https://doi.org/10.3390/ma14174880 - 27 Aug 2021
Cited by 8 | Viewed by 2705
Abstract
The synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl4 type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared [...] Read more.
The synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl4 type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared for the first time; using copper nitrate and perchlorate salts during the syntheses turned out to be the key to avoiding the formation of copper hydroxide sideproducts. Based on the use of the optimized syntheses parameters, the preparation of layered triple and multiple hydroxides was also attempted using Ni(II), Co(II), Zn(II) and even Mg(II) ions. These studies let us identify the relative positions of the incorporating cations in the well-known selectivity series as Ni2+ >> Cu2+ >> Zn2+ > Co2+ >> Mg2+. The solids formed were characterized by using powder X-ray diffractometry, UV–Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The catalytic potential of the samples was investigated in carbon monoxide oxidation reactions at atmospheric pressure, supported by an in situ diffuse reflectance infrared spectroscopy probe. All solids proved to be active and the combination of the nickel and cobalt incorporation (which resulted in a NiCoAl8 layered triple hydroxide) brought outstanding benefits regarding low-temperature oxidation and increased carbon monoxide conversion values. Full article
(This article belongs to the Special Issue Feature Paper in Section Materials Chemistry)
Show Figures

Figure 1

9 pages, 5052 KiB  
Article
Layered Double Hydroxides for Remediation of Industrial Wastewater from a Galvanic Plant
by Anna Maria Cardinale, Cristina Carbone, Sirio Consani, Marco Fortunato and Nadia Parodi
Crystals 2020, 10(6), 443; https://doi.org/10.3390/cryst10060443 - 30 May 2020
Cited by 34 | Viewed by 3797
Abstract
Owing to their structure, layered double hydroxides (LDHs) are nowadays considered as rising materials in different fields of application. In this work, the results obtained in the usage of two different LDHs to remove, by adsorption, some cationic and anionic pollutants from industrial [...] Read more.
Owing to their structure, layered double hydroxides (LDHs) are nowadays considered as rising materials in different fields of application. In this work, the results obtained in the usage of two different LDHs to remove, by adsorption, some cationic and anionic pollutants from industrial wastewater are reported. The two compounds MgAl-CO3 and NiAl-NO3 have been prepared through a hydrothermal synthesis process and then characterized by means of PXRD, TGA, FESEM, and FTIR spectroscopy. The available wastewater, supplied by a galvanic treatment company, has been analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES), resulting as being polluted by Fe(III), Cu(II), and Cr(VI). The water treatment with the two LDHs showed that chromate is more efficiently removed by the NiAl LDH through an exchange with the interlayer nitrate. On the contrary, copper and iron cations are removed in higher amounts by the MgAl LDH, probably through a substitution with Mg, even if sorption on the OH functional groups, surface complexation, and/or precipitation of small amounts of metal hydroxides on the surface of the MgAl LDH could not be completely excluded. Possible applications of the two combined LDHs are also proposed. Full article
(This article belongs to the Special Issue Layered Double Hydroxides (LDHs))
Show Figures

Figure 1

12 pages, 3928 KiB  
Article
Formation of CuO on TiO2 Surface Using its Photocatalytic Activity
by Hiromasa Nishikiori, Naoya Harata, Saho Yamaguchi, Takashi Ishikawa, Hayato Kondo, Ayaka Kikuchi, Tomohiko Yamakami and Katsuya Teshima
Catalysts 2019, 9(4), 383; https://doi.org/10.3390/catal9040383 - 24 Apr 2019
Cited by 16 | Viewed by 4480
Abstract
Some co-catalyst nanoparticles can enhance the activity of photocatalysts due to prolonging the charge separation lifetime by promoting the electron or hole transfer. CuO particles were prepared from an aqueous solution of copper (II) nitrate at 351 K on a TiO2 surface [...] Read more.
Some co-catalyst nanoparticles can enhance the activity of photocatalysts due to prolonging the charge separation lifetime by promoting the electron or hole transfer. CuO particles were prepared from an aqueous solution of copper (II) nitrate at 351 K on a TiO2 surface by a photocatalytic reaction and heating at 573 or 673 K. The amount and size of the particles deposited during the photocatalytic reaction can be controlled by changing the amount of the irradiated photons. The CuO crystals with about 50−250 nm-sized particles were formed. Nitrate ions were reduced to nitrite ions in the solution by the photocatalytic activity of the TiO2, and water was simultaneously transformed into hydroxide ions. An increase in the basicity on the TiO2 surface induced formation of a copper hydroxide. The copper hydroxide was subsequently dehydrated and transformed into CuO by heating. The TiO2 loading of a small amount of CuO demonstrated a higher photocatalytic activity for methylene blue degradation compared to the original TiO2 due to the electron transfer from the TiO2 conduction bands to the CuO conduction band. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

Back to TopTop