Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = containerized solutions for batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 22596 KB  
Project Report
Design Considerations for Reducing Battery Storage in Off-Grid, Stand-Alone, Photovoltaic-Powered Cold Storage in Rural Applications
by Johan Meyer and Sune von Solms
Energies 2022, 15(9), 3468; https://doi.org/10.3390/en15093468 - 9 May 2022
Cited by 6 | Viewed by 4701
Abstract
This paper presents design considerations for the design and implementation of stand-alone photovoltaic-powered containerized cold storage solutions for rural off-grid applications. The work presented is based on a case study of an off-grid photovoltaic-powered cold storage unit located in rural South Africa. Although [...] Read more.
This paper presents design considerations for the design and implementation of stand-alone photovoltaic-powered containerized cold storage solutions for rural off-grid applications. The work presented is based on a case study of an off-grid photovoltaic-powered cold storage unit located in rural South Africa. Although solar-powered solutions for off-grid rural applications are very attractive and offer many benefits, including increased food security, skills development, income generation, and productivity due to the presence of solar power, the application of cold storage requires careful consideration of the design aspects to ensure that the solution is feasible and sustainable. The challenge of maintaining low temperatures inside a cold storage system in an excessively warm environment, such as that frequently encountered in most African rural settings, has stimulated discussions of design considerations for optimal efficiency. Not only are the design aspects of the PV panel mounting and tilt associated with the geographic location of the application, but the heating implications are also derived from the physical orientation of the storage unit. Results from mathematical models are substantiated with field data collected from a case deployment. The design considerations for the sizing of the electrical components in the system are presented. The paper concludes by answering the research question as to what design aspects should be considered for an off-grid, PV-powered containerized cold storage system to reduce the size of the battery storage unit. Full article
(This article belongs to the Special Issue Optimal Design of Off-Grid Power Systems)
Show Figures

Figure 1

34 pages, 696 KB  
Article
Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions
by Giovani T. T. Vieira, Derick Furquim Pereira, Seyed Iman Taheri, Khalid S. Khan, Mauricio B. C. Salles, Josep M. Guerrero and Bruno S. Carmo
Energies 2022, 15(6), 2184; https://doi.org/10.3390/en15062184 - 17 Mar 2022
Cited by 17 | Viewed by 5741
Abstract
The main objective of this paper is to select the optimal configuration of a ship’s power system, considering the use of fuel cells and batteries, that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The [...] Read more.
The main objective of this paper is to select the optimal configuration of a ship’s power system, considering the use of fuel cells and batteries, that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The ship analyzed in this work is a Platform Supply Vessel (PSV) used to support oil and gas offshore platforms transporting goods, equipment, and personnel. The proposed scheme considers the ship’s retrofitting. The ship’s original main generators are maintained, and the fuel cell and batteries are installed as complementary sources. Moreover, a sensitivity analysis is pursued on the ship’s demand curve. The simulations used to calculate the CO2 emissions for each of the new hybrid configurations were developed using HOMER software. The proposed solutions are auxiliary generators, three types of batteries, and a proton-exchange membrane fuel cell (PEMFC) with different sizes of hydrogen tanks. The PEMFC and batteries were sized as containerized solutions, and the sizing of the auxiliary engines was based on previous works. Each configuration consists of a combination of these solutions. The selection of the best configuration is one contribution of this paper. The new configurations are classified according to the reduction of CO2 emitted in comparison to the original system. For different demand levels, the results indicate that the configuration classification may vary. Another valuable contribution of this work is the sizing of the battery and hydrogen storage systems. They were installed in 20 ft containers, since the installation of batteries, fuel cells and hydrogen tanks in containers is widely used for ship retrofit. As a result, the most significant reduction of CO2 emissions is 10.69%. This is achieved when the configuration includes main generators, auxiliary generators, a 3,119 kW lithium nickel manganese cobalt (LNMC) battery, a 250 kW PEMFC, and 581 kg of stored hydrogen. Full article
(This article belongs to the Special Issue Advances in Shipboard Power Systems)
Show Figures

Graphical abstract

30 pages, 7915 KB  
Article
Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment
by Yao Ahoutou, Adrian Ilinca and Mohamad Issa
Energies 2022, 15(4), 1579; https://doi.org/10.3390/en15041579 - 21 Feb 2022
Cited by 21 | Viewed by 6814
Abstract
The energy efficiency of a renewable energy system is inextricably linked to the energy storage technologies used in conjunction with it. The most extensively utilized energy storage technology for all purposes is electrochemical storage batteries, which have grown more popular over time because [...] Read more.
The energy efficiency of a renewable energy system is inextricably linked to the energy storage technologies used in conjunction with it. The most extensively utilized energy storage technology for all purposes is electrochemical storage batteries, which have grown more popular over time because of their extended life, high working voltage, and low self-discharge rate. However, these batteries cannot withstand the very low temperatures encountered in cold regions, even with these very promising technical characteristics. The cold northern temperatures affect the batteries’ electromotive force and thus decrease their storage capacity. In addition, they affect the conductivity of the electrolyte and the kinetics of electrochemical reactions, thus influencing the capacity and speed of electrons in the electrolyte. In this article, which is intended as a literature review, we first describe the technical characteristics of charge–discharge rate of different electrochemical storage techniques and their variations with temperature. Then, new approaches used to adapt these electrochemical storage techniques to cold climates are presented. We also conduct a comparative study between the different electrochemical storage techniques regarding their performance in the harsh climatic conditions of the Canadian North. Full article
(This article belongs to the Special Issue State-of-the-Art Energy Related Technologies in Canada 2021-2022)
Show Figures

Figure 1

Back to TopTop