Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = congenital spinal deformities (CSDs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1466 KB  
Review
Reviewing the Genetic and Molecular Foundations of Congenital Spinal Deformities: Implications for Classification and Diagnosis
by Diana Samarkhanova, Maxat Zhabagin and Nurbek Nadirov
J. Clin. Med. 2025, 14(4), 1113; https://doi.org/10.3390/jcm14041113 - 9 Feb 2025
Cited by 1 | Viewed by 1904
Abstract
Congenital spinal deformities (CSDs) are rare but severe conditions caused by abnormalities in vertebral development during embryogenesis. These deformities, including scoliosis, kyphosis, and lordosis, significantly impair patients’ quality of life and present challenges in diagnosis and treatment. This review integrates genetic, molecular, and [...] Read more.
Congenital spinal deformities (CSDs) are rare but severe conditions caused by abnormalities in vertebral development during embryogenesis. These deformities, including scoliosis, kyphosis, and lordosis, significantly impair patients’ quality of life and present challenges in diagnosis and treatment. This review integrates genetic, molecular, and developmental insights to provide a comprehensive framework for classifying and understanding CSDs. Traditional classification systems based on morphological criteria, such as failures in vertebral formation, segmentation, or mixed defects, are evaluated alongside newer molecular-genetic approaches. Advances in genetic technologies, including whole-exome sequencing, have identified critical genes and pathways involved in somitogenesis and sclerotome differentiation, such as TBX6, DLL3, and PAX1, as well as key signaling pathways like Wnt, Notch, Hedgehog, BMP, and TGF-β. These pathways regulate vertebral development, and their disruption leads to skeletal abnormalities. The review highlights the potential of molecular classifications based on genetic mutations and developmental stage-specific defects to enhance diagnostic precision and therapeutic strategies. Early diagnosis using non-invasive prenatal testing (NIPT) and emerging tools like CRISPR-Cas9 gene editing offer promising but ethically complex avenues for intervention. Limitations in current classifications and the need for further research into epigenetic and environmental factors are discussed. This study underscores the importance of integrating molecular genetics into clinical practice to improve outcomes for patients with CSDs. Full article
Show Figures

Figure 1

Back to TopTop