Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = compound day- and nighttime heatwaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10485 KB  
Article
The Role of Air Conditioning Adaptation in Mitigating Compound Day–Night Heatwave Exposure in China Under Climate Change
by Yuke Wang and Feng Ma
Atmosphere 2025, 16(8), 912; https://doi.org/10.3390/atmos16080912 - 28 Jul 2025
Viewed by 578
Abstract
Global warming and rapid urbanization have increased population exposure to heatwaves, with compound day- and night-time heatwaves (CDNH) posing greater health risks than individual heatwave events. Although air conditioning (AC) adaptation effectively mitigates heat-related impacts, its role in reducing CDNH exposure under climate [...] Read more.
Global warming and rapid urbanization have increased population exposure to heatwaves, with compound day- and night-time heatwaves (CDNH) posing greater health risks than individual heatwave events. Although air conditioning (AC) adaptation effectively mitigates heat-related impacts, its role in reducing CDNH exposure under climate change remains unknown. Using meteorological and socioeconomic data, this study quantified population exposure to CDNHs and the impacts that could be avoided through AC adaptation across China and its regional variations. Results show that CDNH exposure risks were particularly high in the middle–lower Yangtze–Huaihe Basin and south China, with an increasing trend observed over the period of 2001–2022. AC adaptation has reduced the exposure risk and its upward trend by 5.85% and 37.87%, respectively, with higher mitigating effects in urban areas. By breaking down the total exposure changes into climatic, demographic, and AC-driven changes, this study reveals that increased AC contributes 10.16% to exposure reduction, less than the effect of climate warming (59.80%) on the exposure increases. These findings demonstrate that expanding AC adaptation alone is insufficient to offset climate-driven increases in exposure, highlighting the urgent need for more effective adaptation measures to address climate change and thereby alleviate its adverse impacts on human beings. Full article
Show Figures

Figure 1

Back to TopTop