Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = combination chemotherapy with JNJ-42756493

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 427 KB  
Review
Therapeutic Implications of Menin Inhibitors in the Treatment of Acute Leukemia: A Critical Review
by Martina Canichella, Cristina Papayannidis, Carla Mazzone and Paolo de Fabritiis
Diseases 2025, 13(7), 227; https://doi.org/10.3390/diseases13070227 - 19 Jul 2025
Cited by 1 | Viewed by 3803
Abstract
Menin inhibitors are a class of targeted agents that exemplify how a deeper understanding of leukemia pathogenesis can unify seemingly distinct genetic acute leukemia subgroups under a common therapeutic strategy. In particular, acute leukemia with NPM1 mutations (NPM1m) and KMT2A rearrangements ( [...] Read more.
Menin inhibitors are a class of targeted agents that exemplify how a deeper understanding of leukemia pathogenesis can unify seemingly distinct genetic acute leukemia subgroups under a common therapeutic strategy. In particular, acute leukemia with NPM1 mutations (NPM1m) and KMT2A rearrangements (KMT2Ar) represent the primary targets of this emerging drug class. Acute myeloid leukemia (AML) with NPM1m—which accounts for approximately 30% of AML cases and AML or acute lymphoblastic leukemia (ALL) with KMT2Ar—and is present in 5–10% of cases, shares a common pathogenetic mechanism: the aberrant activation of the MEIS1–HOXA axis. These leukemic subsets are associated with poor prognosis, particularly in the relapsed/refractory (R/R) setting. For KMT2Ar AML, the prognosis is especially dismal, with a median overall survival (OS) of 2.4 months and a complete remission (CR) rate of only 5%. In NPM1m AML, intensive chemotherapy achieves remission in approximately 80% of cases, but relapse remains a major challenge, occurring in nearly 50% of patients. Relapsed NPM1m AML is linked to a poor prognosis, with a median OS of 6.1 months (12-month OS: 30%) and a median relapse-free survival (RFS) of 5.5 months (12-month RFS: 34%). Menin inhibitors directly target the leukemogenic transcriptional program driven by HOX and MEIS1, disrupting oncogenic signaling and offering a promising therapeutic approach for these high-risk patients. This class of agents has rapidly progressed through clinical development, showing promising antileukemic activity in both treatment-naïve and R/R AML. Currently, six menin inhibitors are in clinical evaluation as monotherapy or in combination regimens: revumenib, ziftomenib, bleximenib (previously JNJ-75276617), enzomenib (previously DSP-5336), DS-1594, and BMF-219. In this review, we critically analyze the clinical development and therapeutic potential of the four most extensively studied menin inhibitors—revumenib, ziftomenib, bleximenib, and enzomenib. We discuss their efficacy, safety profiles, and potential roles within the current treatment algorithm. The continued clinical evaluation of menin inhibitors may redefine treatment paradigms for NPM1m and KMT2Ar AML and other acute leukemia with the aberrant MEIS1-HOXA axis, offering new hope for patients with limited therapeutic options. Full article
(This article belongs to the Special Issue Targeted Therapies for Acute Leukemias)
Show Figures

Figure 1

18 pages, 2750 KB  
Article
Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs
by Chung-Pu Wu, Tai-Ho Hung, Sung-Han Hsiao, Yang-Hui Huang, Lang-Cheng Hung, Yi-Jou Yu, Yu-Tzu Chang, Shun-Ping Wang and Yu-Shan Wu
Cancers 2020, 12(6), 1366; https://doi.org/10.3390/cancers12061366 - 26 May 2020
Cited by 34 | Viewed by 5248
Abstract
The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that [...] Read more.
The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that can actively efflux a range of anticancer drugs out of cancer cells, causing MDR. Given the lack of Food and Drug Administration (FDA)-approved treatment for multidrug-resistant cancers, we explored the prospect of repurposing erdafitinib, the first fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the FDA, to reverse MDR mediated by ABCB1. We discovered that by reducing the function of ABCB1, erdafitinib significantly resensitized ABCB1-overexpressing multidrug-resistant cancer cells to therapeutic drugs at sub-toxic concentrations. Results of erdafitinib-stimulated ABCB1 ATPase activity and in silico docking analysis of erdafitinib binding to the substrate-binding pocket of ABCB1 further support the interaction between erdafitinib and ABCB1. Moreover, our data suggest that ABCB1 is not a major mechanism of resistance to erdafitinib in cancer cells. In conclusion, we revealed an additional action of erdafitinib as a potential treatment option for multidrug-resistant cancers, which should be evaluated in future drug combination trials. Full article
(This article belongs to the Collection Drug Resistance and Novel Therapies in Cancers)
Show Figures

Figure 1

20 pages, 3652 KB  
Article
PDGFR and IGF-1R Inhibitors Induce a G2/M Arrest and Subsequent Cell Death in Human Glioblastoma Cell Lines
by Estefania Carrasco-Garcia, Isabel Martinez-Lacaci, Leticia Mayor-López, Elena Tristante, Mar Carballo-Santana, Pilar García-Morales, Maria Paz Ventero Martin, Maria Fuentes-Baile, Álvaro Rodriguez-Lescure and Miguel Saceda
Cells 2018, 7(9), 131; https://doi.org/10.3390/cells7090131 - 6 Sep 2018
Cited by 23 | Viewed by 6259
Abstract
Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be [...] Read more.
Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

Back to TopTop