Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = color polymer nanospheres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1614 KiB  
Article
Spectroscopic Ellipsometry and Optical Modelling of Structurally Colored Opaline Thin-Films
by Chris E. Finlayson, Giselle Rosetta and John J. Tomes
Appl. Sci. 2022, 12(10), 4888; https://doi.org/10.3390/app12104888 - 12 May 2022
Cited by 6 | Viewed by 3056
Abstract
The method of spectroscopic ellipsometry is applied to complex periodic nanomaterials, consisting of shear-ordered polymeric nanosphere composites, with intense resonant structural color. A corresponding multilayer optical quasi-model of the system, parametrizing the inherent degree of sample disorder and encompassing key properties of effective [...] Read more.
The method of spectroscopic ellipsometry is applied to complex periodic nanomaterials, consisting of shear-ordered polymeric nanosphere composites, with intense resonant structural color. A corresponding multilayer optical quasi-model of the system, parametrizing the inherent degree of sample disorder and encompassing key properties of effective refractive-index and index-contrast, is developed to elucidate the correlation between the ∆ and Ψ ellipsometric parameters and the shear-induced opaline crystallinity. These approaches offer reliable means of in-line tracking of the sample quality of such “polymer opals” in large scale processing and applications. Full article
(This article belongs to the Special Issue Nanophotonic Devices and Technologies)
Show Figures

Figure 1

13 pages, 5608 KiB  
Article
Inkjet Printable and Self-Curable Disperse Dyes/P(St-BA-MAA) Nanosphere Inks for Both Hydrophilic and Hydrophobic Fabrics
by Yawei Song, Kuanjun Fang, Yanfei Ren, Zhiyuan Tang, Rongqing Wang, Weichao Chen, Ruyi Xie, Zhen Shi and Longyun Hao
Polymers 2018, 10(12), 1402; https://doi.org/10.3390/polym10121402 - 18 Dec 2018
Cited by 44 | Viewed by 5720
Abstract
Low-water-soluble disperse dyes possess a broad color gamut and good durability, but they need chemical or physical modification before being used in inks and can only be applied to several kinds of hydrophobic fabrics. In this work, disperse dyes/P(St-BA-MAA) nanospheres (known as DPN) [...] Read more.
Low-water-soluble disperse dyes possess a broad color gamut and good durability, but they need chemical or physical modification before being used in inks and can only be applied to several kinds of hydrophobic fabrics. In this work, disperse dyes/P(St-BA-MAA) nanospheres (known as DPN) absorbed by sodium nitrilotriacetate (known as NTA@DPN) were prepared and applied into ink formulations, which exhibited high dye fixation, long-term stability and self-curable ability without addition of any binder. Transmission electron microscopy (TEM) images showed the nanospheres have homogeneous core-shell spherical shape and the average diameter increased by 20.6 nm after coloration. X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), and differential scanning calorimetry (DSC) measurements illustrated the interaction between dyes and nanospheres and indicated that the colored nanospheres contained both dye molecules and crystalline dyes. The Zeta potential and particle size measurements demonstrated that the dispersion stability was improved when sodium nitrilotriacetate (NTA) was absorbed onto DPN. The rheological behavior of the NTA@DPN inks was Newtonian and desired droplet formation was achieved at the viscosity of 4.23 mPa·s. Both hydrophilic cotton and hydrophobic polyester fabrics were cationic modified before used, which had an excellent image quality and desired rubbing fastness after inkjet printing. Scanning electron microscope (SEM) images showed NTA@DPN formed stable deposits on the surface of modified fibers and could self-cure to form continuous film coating on the fiber surface after being baked at 150 °C without addition of any binder. Full article
Show Figures

Graphical abstract

Back to TopTop