Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cobalt-doped GaN nanowires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4376 KiB  
Article
High-Quality Epitaxial Cobalt-Doped GaN Nanowires on Carbon Paper for Stable Lithium-Ion Storage
by Peng Wu, Xiaoguang Wang, Danchen Wang, Yifan Wang, Qiuju Zheng, Tailin Wang, Changlong Sun, Dan Liu, Fuzhou Chen and Sake Wang
Molecules 2024, 29(22), 5428; https://doi.org/10.3390/molecules29225428 - 18 Nov 2024
Viewed by 1088
Abstract
Due to its distinctive structure and unique physicochemical properties, gallium nitride (GaN) has been considered a prospective candidate for lithium storage materials. However, its inferior conductivity and unsatisfactory cycle performance hinder the further application of GaN as a next-generation anode material for lithium-ion [...] Read more.
Due to its distinctive structure and unique physicochemical properties, gallium nitride (GaN) has been considered a prospective candidate for lithium storage materials. However, its inferior conductivity and unsatisfactory cycle performance hinder the further application of GaN as a next-generation anode material for lithium-ion batteries (LIBs). To address this, cobalt (Co)-doped GaN (Co-GaN) nanowires have been designed and synthesized by utilizing the chemical vapor deposition (CVD) strategy. The structural characterizations indicate that the doped Co elements in the GaN nanowires exist as Co2+ rather than metallic Co. The Co2+ prominently promotes electrical conductivity and ion transfer efficiency in GaN. The cycling capacity of Co-GaN reached up to 495.1 mA h g−1 after 100 cycles. After 500 cycles at 10 A g−1, excellent cycling capacity remained at 276.6 mA h g−1. The intimate contact between Co-GaN nanowires and carbon paper enhances the conductivity of the composite. Density functional theory (DFT) calculations further illustrated that Co substitution changed the electron configuration in the GaN, which led to enhancement of the electron transfer efficiency and a reduction in the ion diffusion barrier on the Co-GaN electrode. This doping design boosts the lithium-ion storage performance of GaN as an advanced material in lithium-ion battery anodes and in other electrochemical applications. Full article
Show Figures

Figure 1

17 pages, 3629 KiB  
Article
Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition
by Zhe Chuan Feng, Yu-Lun Liu, Jeffrey Yiin, Li-Chyong Chen, Kuei-Hsien Chen, Benjamin Klein and Ian T. Ferguson
Materials 2023, 16(1), 97; https://doi.org/10.3390/ma16010097 - 22 Dec 2022
Cited by 3 | Viewed by 2803
Abstract
GaN nanowires (NWs) grown on silicon via atmospheric pressure chemical vapor deposition were doped with Cobalt (Co) by ion implantation, with a high dose concentration of 4 × 1016 cm−2, corresponding to an average atomic percentage of ~3.85%, and annealed [...] Read more.
GaN nanowires (NWs) grown on silicon via atmospheric pressure chemical vapor deposition were doped with Cobalt (Co) by ion implantation, with a high dose concentration of 4 × 1016 cm−2, corresponding to an average atomic percentage of ~3.85%, and annealed after the implantation. Co-doped GaN showed optimum structural properties when annealed at 700 °C for 6 min in NH3 ambience. From scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscope, and energy dispersive X-ray spectroscopy measurements and analyses, the single crystalline nature of Co-GaN NWs was identified. Slight expansion in the lattice constant of Co-GaN NWs due to the implantation-induced stress effect was observed, which was recovered by thermal annealing. Co-GaN NWs exhibited ferromagnetism as per the superconducting quantum interference device (SQUID) measurement. Hysteretic curves with Hc (coercivity) of 502.5 Oe at 5 K and 201.3 Oe at 300 K were obtained. Applied with a magnetic field of 100 Oe, the transition point between paramagnetic property and ferromagnetic property was determined at 332 K. Interesting structural and conducive magnetic properties show the potential of Co-doped GaN nanowires for the next optoelectronic, electronic, spintronic, sensing, optical, and related applications. Full article
(This article belongs to the Special Issue III-V Semiconductor Optoelectronics: Materials and Devices)
Show Figures

Graphical abstract

12 pages, 3229 KiB  
Article
High Quality Growth of Cobalt Doped GaN Nanowires with Enhanced Ferromagnetic and Optical Response
by Mudassar Maraj, Ghulam Nabi, Khurram Usman, Engui Wang, Wenwang Wei, Yukun Wang and Wenhong Sun
Materials 2020, 13(16), 3537; https://doi.org/10.3390/ma13163537 - 11 Aug 2020
Cited by 7 | Viewed by 3249
Abstract
Group III–V semiconductors with direct band gaps have become crucial for optoelectronic and microelectronic applications. Exploring these materials for spintronic applications is an important direction for many research groups. In this study, pure and cobalt doped GaN nanowires were grown on the Si [...] Read more.
Group III–V semiconductors with direct band gaps have become crucial for optoelectronic and microelectronic applications. Exploring these materials for spintronic applications is an important direction for many research groups. In this study, pure and cobalt doped GaN nanowires were grown on the Si substrate by the chemical vapor deposition (CVD) method. Sophisticated characterization techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (HRTEM) and photoluminescence (PL) were used to characterize the structure, morphology, composition and optical properties of the nanowires. The doped nanowires have diameters ranging from 60–200 nm and lengths were found to be in microns. By optimizing the synthesis process, pure, smooth, single crystalline and highly dense nanowires have been grown on the Si substrate which possess better magnetic and optical properties. No any secondary phases were observed even with 8% cobalt doping. The magnetic properties of cobalt doped GaN showed a ferromagnetic response at room temperature. The value of saturation magnetization is found to be increased with increasing doping concentration and magnetic saturation was found to be 792.4 µemu for 8% cobalt doping. It was also depicted that the Co atoms are substituted at Ga sites in the GaN lattice. Furthermore N vacancies are also observed in the Co-doped GaN nanowires which was confirmed by the PL graph exhibiting nitrogen vacancy defects and strain related peaks at 455 nm (blue emission). PL and magnetic properties show their potential applications in spintronics. Full article
(This article belongs to the Special Issue The Research of Inorganic Nanomaterials)
Show Figures

Figure 1

Back to TopTop