Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = clean energy standards (CES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2633 KiB  
Review
Circular Economy Transitions in Textile, Apparel, and Fashion: AI-Based Topic Modeling and Sustainable Development Goals Mapping
by Raghu Raman, Payel Das, Rimjhim Aggarwal, Rajesh Buch, Balasubramaniam Palanisamy, Tripti Basant, Urvashi Baid, Pozhamkandath Karthiayani Viswanathan, Nava Subramaniam and Prema Nedungadi
Sustainability 2025, 17(12), 5342; https://doi.org/10.3390/su17125342 - 10 Jun 2025
Viewed by 1937
Abstract
This study focuses on the shift to a circular economy (CE) in the textile, apparel, and fashion (TAF) sectors, which generate tons of waste annually. Thus, embracing CE practices is essential for contributing to UN Sustainable Development Goals. This study employs a mixed-methods [...] Read more.
This study focuses on the shift to a circular economy (CE) in the textile, apparel, and fashion (TAF) sectors, which generate tons of waste annually. Thus, embracing CE practices is essential for contributing to UN Sustainable Development Goals. This study employs a mixed-methods approach, integrating PRISMA for systematic literature selection, BERTopic modeling and AI-driven SDG mapping, and case study analysis to explore emerging CE themes, implemented circular practices, and systemic barriers. Machine-learning-based SDG mapping reveals strong linkages to SDG 9 and SDG 12, emphasizing technological advancements, industrial collaborations, and circular business models. Moderately explored SDGs, namely, SDG 8, SDG 6, and SDG 7, highlight research on labor conditions, water conservation, and clean energy integration. Reviewing 655 peer-reviewed papers, the BERTopic modeling extracted six key themes, including sustainable recycling, circular business models, and consumer engagement, whereas case studies highlighted regulatory frameworks, stakeholder collaboration, and financial incentives as critical enablers. The findings advance institutional theory by demonstrating how certifications, material standards, and regulations drive CE adoption, reinforcing SDG 12 and SDG 16. The natural resource-based view is extended by showing that technological resources alone are insufficiently aligned with SDG 9. Using the Antecedents–Decisions–Outcomes framework, this study presents a structured, AI-driven roadmap for scaling CE in the TAF industry, addressing systemic barriers, and supporting global sustainability goals, highlighting how multistakeholder collaboration, digital traceability, and inclusive governance can improve the impact of CE. The results recommend that CE strategies should be aligned with net-zero targets, carbon credit systems, and block-chain-based supply chains. Full article
Show Figures

Figure 1

10 pages, 9125 KiB  
Article
US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies
by Petros N. Vasilakos, Huizhong Shen, Qasim Mehdi, Peter Wilcoxen, Charles Driscoll, Kathy Fallon, Dallas Burtraw, Maya Domeshek and Armistead G. Russell
Atmosphere 2022, 13(9), 1401; https://doi.org/10.3390/atmos13091401 - 31 Aug 2022
Cited by 11 | Viewed by 3169
Abstract
In this work, we compare the air quality benefits of a variety of future policy scenarios geared towards controlling EGU (electricity generating units) emissions between the present-day conditions and 2050. While these policies are motivated by reducing CO2 emissions, they also yield [...] Read more.
In this work, we compare the air quality benefits of a variety of future policy scenarios geared towards controlling EGU (electricity generating units) emissions between the present-day conditions and 2050. While these policies are motivated by reducing CO2 emissions, they also yield significant co-benefits for criteria pollutants, such as ozone and PM2.5. An integrated set of clean energy policies were examined to assess the time-varying costs and benefits of a range of decarbonization strategies, including business as usual and the Affordable Clean Energy plan, with a primary focus on others that look to achieve very low, if not zero, CO2 emissions from the EGU sector by 2050. Benefits assessed include mitigation of greenhouse gas emissions as well as air quality co-benefits. In this introductory work, we describe the potential air quality changes from various clean air policies, to set the stage for upcoming work looking at health and monetized benefits. Emission changes for key pollutants are forecast using the Integrated Planning Model (IPM), which are then transformed into emission inputs for the Community Multiscale Air Quality Model (CMAQ). For all primary scenarios considered that achieve large greenhouse gas decreases, significant reductions in ozone and PM are realized, mainly in the eastern US, and all policies produce air quality benefits. Full article
(This article belongs to the Special Issue Urban Air Chemistry in Changing Times)
Show Figures

Figure 1

16 pages, 8538 KiB  
Article
Economic Impacts of Increased U.S. Exports of Natural Gas: An Energy System Perspective
by Kemal Sarıca and Wallace E. Tyner
Energies 2016, 9(6), 401; https://doi.org/10.3390/en9060401 - 25 May 2016
Cited by 9 | Viewed by 5018
Abstract
With the recent shale gas boom, the U.S. is expected to have very large natural gas resources. In this respect, the key question is would it be better to rely completely on free market resource allocations which would lead to large exports of [...] Read more.
With the recent shale gas boom, the U.S. is expected to have very large natural gas resources. In this respect, the key question is would it be better to rely completely on free market resource allocations which would lead to large exports of natural gas or to limit natural gas exports so that more could be used in the U.S.. After accounting for the cost of liquefying the natural gas and shipping it to foreign markets, the current price difference leaves room for considerable profit to producers from exports. In addition, there is a large domestic demand for natural gas from various sectors such as electricity generation, industrial applications, and the transportation sector etc. A hybrid modeling approach has been carried out using our version of the well-known MARket ALlocation (MARKAL)-Macro model to keep bottom-up model richness with macro effects to incorporate price and gross domestic product (GDP) feedbacks. One of the conclusion of this study is that permitting higher natural gas export levels leads to a small reduction in GDP (0.04%–0.17%). Higher exports also increases U.S. greenhouse gas (GHG) emissions and electricity prices (1.1%–7.2%). We also evaluate the impacts of natural gas exports in the presence of a Clean Energy Standard (CES) for electricity. In this case, the GDP impacts are similar, but the electricity and transport sector impacts are different. Full article
(This article belongs to the Special Issue Multi-Disciplinary Perspectives on Energy and Sustainable Development)
Show Figures

Figure 1

Back to TopTop