Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = citrogypsum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7979 KB  
Article
Physical, Mechanical and Microstructural Characteristics of Perlite-Based Geopolymers Modified with Mineral Additives
by Natalia I. Kozhukhova, Roman A. Glazkov, Marina S. Ageeva, Marina I. Kozhukhova, Ivan S. Nikulin and Irina V. Zhernovskaya
J. Compos. Sci. 2024, 8(6), 211; https://doi.org/10.3390/jcs8060211 - 4 Jun 2024
Cited by 3 | Viewed by 2062
Abstract
One of the promising raw materials for the synthesis of geopolymers is perlite, which is a natural low-calcium aluminosilicate. This research studied the physical, mechanical and microstructural characteristics of perlite-based geopolymers modified with different mineral additives that were prepared using different methods of [...] Read more.
One of the promising raw materials for the synthesis of geopolymers is perlite, which is a natural low-calcium aluminosilicate. This research studied the physical, mechanical and microstructural characteristics of perlite-based geopolymers modified with different mineral additives that were prepared using different methods of introducing the alkali components and curing conditions. The experimental results of the consolidated perlite-based geopolymer pastes showed that curing conditions and the method of introducing the alkali component into the geopolymer matrix had a minimal effect on the average density while demonstrating a significant boost in compressive strength. So, after thermal treatment, the compressive strength increased by 0.63 to 11.4 times for the mixes when fresh alkali solution was used and by 0.72 to 12.8 times for the mixes with the 24 h conditioned alkali solution. Maximum-strength spikes from 1.1 MPa to 13.2 MPa and from 0.7 MPa to 9.7 MPa were observed for the mixes with kaolin when prepared with fresh and conditioned alkali solutions, respectively. It was also observed that thermal treatment facilitates the compaction of the matrix structure by 18% and 1% for the non-modified mix and the mix modified with Portland cement. Perlite-based geopolymers modified with Portland cement and citrogypsum demonstrated a significant reduction in the initial and final setting times with both methods of introducing the alkali solution. On the surface of mixes modified with citrogypsum, regardless of the curing conditions and method of introducing the alkali component, an efflorescence substance was observed. The microstructural analysis of the consolidated geopolymer perlite-based pastes containing citrogypsum demonstrated a loose structure and the presence of efflorescence, which can be associated with a retardation in interaction processes between alkali cations and the aluminosilicate component. EDS analysis demonstrated that the presence of such elements as oxygen, sodium and sulfur may indicate the efflorescence of unreacted sodium hydroxide (NaOH), citrogypsum (CaSO4) and the products of their interaction in the form of crystalline hydrates of sodium sulfate (Na2SO4). Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

21 pages, 20751 KB  
Article
The Production of Gypsum Materials with Recycled Citrogypsum Using Semi-Dry Pressing Technology
by Nataliya Alfimova, Sevda Pirieva, Ksenia Levickaya, Natalia Kozhukhova and Mikhail Elistratkin
Recycling 2023, 8(2), 34; https://doi.org/10.3390/recycling8020034 - 8 Mar 2023
Cited by 11 | Viewed by 4106
Abstract
The search for ways to utilize and recycle industrial by-products is the basic principle that governs rational environmental management, synthesis of “green” materials, and appears as one of the main criteria for sustainable development in most countries of the world. Gypsum-containing waste (GCW) [...] Read more.
The search for ways to utilize and recycle industrial by-products is the basic principle that governs rational environmental management, synthesis of “green” materials, and appears as one of the main criteria for sustainable development in most countries of the world. Gypsum-containing waste (GCW) derived from industries, represents a large-tonnage product. The production of gypsum materials could be one of the ways to recycle GCW products. GCW from various industries can be used as an alternative to natural raw materials when producing gypsum binders. However, the features of GCW do not allow the production of a high-quality binder when traditional technologies are applied, so it requires the development of additional methods or the introduction of various modifiers to the binder system. One of the ways to increase the efficiency of GCW as a raw material for the production of gypsum binders is to apply a semi-dry pressing method, at reduced values of the W/S ratio of the binder. The objective of this research was to study the possibility of increasing the efficiency of GCW using citrogypsum for production of gypsum materials, by optimization of the mix design and by applying a semi-dry pressing method, using a lower pressure load at the molding stage. The mix design and technological parameters were optimized using mathematical planning of the experimental method. Parameters such as the amount of citrogypsum as an additive in the raw mixture, molding pressure, and water–solid (W/S) ratio were taken as input parameters of variation. To plot the relationship of the input–output parameters, the SigmaPlot software was applied, to analyze and demonstrate scientific and statistical data in the form of nomograms. It has been established that the use of the semi-dry pressing method with the optimal mix design and technological parameters, makes it possible to obtain gypsum samples with demolding strengths up to 2 MPa, and final compressive strengths up to 26 MPa. The incorporation of citrogypsum and the optimal W/S ratio of 0.25, results in positive effects, such as a reduction in the sticking properties of the mix during the demolding stage, and the homogeneity of compaction and visual appearance of the samples were also improved. Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
Show Figures

Figure 1

16 pages, 3511 KB  
Article
The Effect of Recycled Citrogypsum as a Supplementary Mineral Additive on the Physical and Mechanical Performance of Granulated Blast Furnace Slag-Based Alkali-Activated Binders
by Natalia I. Kozhukhova, Nataliya I. Alfimova, Marina I. Kozhukhova, Ivan S. Nikulin, Roman A. Glazkov and Anna I. Kolomytceva
Recycling 2023, 8(1), 22; https://doi.org/10.3390/recycling8010022 - 7 Feb 2023
Cited by 6 | Viewed by 3087
Abstract
In the last decades, gypsum-bearing industrial wastes become one of the common globally produced industrial and domestic wastes that are currently recycled and further utilized. In this study, the gypsum-bearing waste citrogypsum was used as a Ca2+-containing component to modify the [...] Read more.
In the last decades, gypsum-bearing industrial wastes become one of the common globally produced industrial and domestic wastes that are currently recycled and further utilized. In this study, the gypsum-bearing waste citrogypsum was used as a Ca2+-containing component to modify the properties of alkali-activated cement (AAC) based on granulated blast-furnace slag (GBFS). Citrogypsum was used in different AAC mixes activated with three different alkaline components: Na2CO3, NaOH, and Na2SiO3. Laser granulometry was applied to assess the granulometric characteristics of citrogypsum and GBFS. Specific gravity (SG), compressive strength, and water resistance were tested to evaluate the effect of citrogypsum on the physical and strength performance of AAC. Experimental results obtained over 4-day to 28-day time periods for the studied AACs showed that the addition of citrogypsum had a detrimental effect on the properties of AAC mixes, where decreases in compressive strength between 1 and 100%, decreases in specific gravity between 4 and 30%, and decreases in water resistance between 12 and 100% were observed. It was determined that AAC mixes modified with citrogypsum cured in ambient conditions had compressive strength values 61% to 90% lower than those cured in hydrothermal conditions. In terms of strength performance, specific gravity and water resistance, citrogypsum showed the greatest effect on AAC mixes activated with NaOH, and to a lesser extent, on mixes activated with Na2CO3. The highest water resistance value of 0.77 was observed for the AAC mixes activated with Na2CO3 cured in ambient conditions, and when cured in hydrothermal conditions, the highest water resistance reached up to 0.84 for the AAC mixes activated with NaOH. It was observed that the type of alkaline activator and curing conditions are both crucial factors that govern the response of citrogypsum as a supplementary mineral additive in GBFS-based AAC mixes in regard to compressive strength, specific gravity and water resistance. Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
Show Figures

Figure 1

16 pages, 2673 KB  
Article
Influence of Gypsum-Containing Waste on Ammonia Binding in Animal Waste Composting
by Valeriy Voropaev, Nataliya Alfimova, Ivan Nikulin, Tatyana Nikulicheva, Aleksej Titenko and Vitaly Nikulichev
Agriculture 2021, 11(11), 1153; https://doi.org/10.3390/agriculture11111153 - 17 Nov 2021
Cited by 5 | Viewed by 4003
Abstract
The possibility of using gypsum-containing waste–citrogypsum, which is a by-product of the chemical biosynthesis of citric acid, was considered as an additive for composting poultry manure from poultry farms that practice litter-free poultry keeping. The research was carried out on an experimental batch [...] Read more.
The possibility of using gypsum-containing waste–citrogypsum, which is a by-product of the chemical biosynthesis of citric acid, was considered as an additive for composting poultry manure from poultry farms that practice litter-free poultry keeping. The research was carried out on an experimental batch of 1500 tons. The production of the batch was carried out by mixing citrogypsum with a moisture content of 30% and litterless chicken manure with a moisture content of no more than 80% in a ratio of 1:2. The resulting mixture was placed on an open landfill in piles 3 m wide, 1 m high and 400 m long and was mixed twice with a compost turner. Further processing consisted of mixing the mass once every seven days. The controlled parameters were changes in humidity, temperature, pH and nitrogen content during composting. In the course of the experiment, it was found that the introduction of citrogypsum into the composition of the compost helps to optimize the moisture, temperature and pH of the mixture, and a decrease in ammonia emission to 87% was recorded, with an increase in nitrogen content of 2.4 times compared to the initial value. It was concluded that citrogypsum can be used in composting poultry waste to reduce volatilization of ammonia and preserve nutrients. Full article
(This article belongs to the Special Issue From Waste to Fertilizer in Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 5326 KB  
Article
Faience Waste for the Production of Wall Products
by Kirill Petropavlovskii, Tatiana Novichenkova, Victoria Petropavlovskaya, Mikhail Sulman, Roman Fediuk and Mugahed Amran
Materials 2021, 14(21), 6677; https://doi.org/10.3390/ma14216677 - 5 Nov 2021
Cited by 17 | Viewed by 2296
Abstract
Increasing the efficiency of using gypsum binders can be carried out by using not natural gypsum raw materials, but calcium sulfate-containing waste from various industries (phosphogypsum, borogypsum, citrogypsum, etc.). As the main source material in the work, we used gypsum-containing waste from a [...] Read more.
Increasing the efficiency of using gypsum binders can be carried out by using not natural gypsum raw materials, but calcium sulfate-containing waste from various industries (phosphogypsum, borogypsum, citrogypsum, etc.). As the main source material in the work, we used gypsum-containing waste from a faience factory in the form of waste molds for casting dishes, souvenirs and plumbing fixtures. It has been established that the optimal binding system is formed by mixing powders of dihydrate technogenic gypsum from a coarse and fine earthenware factory with average particle diameters of 3.473 microns and 3.065 microns in a percentage ratio of 30:70, respectively. Using a computer software developed by the authors, which makes it possible to simulate the microstructure of a raw mixture taking into account the contact interaction of particles and calculate the average coordination number, models of binary packing of particles were constructed at various ratios of their diameters. Studies of the strength of composites obtained on the basis of bidisperse systems have shown the presence of an extremum in the region of mixtures containing 30% coarse powder. With optimal packing, a large number of phase contacts are formed due to the regulation of the grain composition of the bidisperse system. It was revealed that a brick based on the waste of two-water gypsum from earthenware production has 2.5–5 times better characteristics of compressive strength than traditional building wall products based on natural gypsum. At the same time, the strength immediately after molding is more than 3 times higher than that of traditional gypsum products. Even higher indicators are achieved when adding microcalcite in addition to the waste of earthenware production, in this case, the compressive strength is 3–6 times higher, and the strength immediately after molding is almost 3 times higher than that of traditional gypsum products. Full article
Show Figures

Figure 1

Back to TopTop