Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = chrysosplenol d

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15039 KiB  
Article
Chrysosplenol D Triggers Apoptosis through Heme Oxygenase-1 and Mitogen-Activated Protein Kinase Signaling in Oral Squamous Cell Carcinoma
by Ming-Ju Hsieh, Chia-Chieh Lin, Yu-Sheng Lo, Yi-Ching Chuang, Hsin-Yu Ho and Mu-Kuan Chen
Cancers 2021, 13(17), 4327; https://doi.org/10.3390/cancers13174327 - 27 Aug 2021
Cited by 14 | Viewed by 3370
Abstract
Chrysosplenol D, a flavonol isolated from Artemisia annua L., can exert anticancer effects. This study investigated the anticancer property of chrysosplenol D and its underlying mechanism in oral squamous cell carcinoma (OSCC). We observed that chrysosplenol D reduced cell viability and caused cell [...] Read more.
Chrysosplenol D, a flavonol isolated from Artemisia annua L., can exert anticancer effects. This study investigated the anticancer property of chrysosplenol D and its underlying mechanism in oral squamous cell carcinoma (OSCC). We observed that chrysosplenol D reduced cell viability and caused cell cycle arrest in the G2/M phase. The findings of annexin V/propidium iodide staining, chromatin condensation, and apoptotic-related protein expression revealed that chrysosplenol D regulated apoptosis in OSCC. Furthermore, chrysosplenol D altered the expression of the autophagy marker LC3 and other autophagy-related proteins. Phosphatidylinositol 3-kinase/protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase (MAPK) were downregulated by chrysosplenol D, and the inhibition of these pathways significantly enhanced chrysosplenol D-induced cleaved poly (ADP-ribose) polymerase activation. Moreover, the upregulation of heme oxygenase-1 (HO-1) was found to be critical for chrysosplenol D-induced apoptotic cell death. The analysis of clinical data from The Cancer Genome Atlas and Gene Expression Omnibus datasets revealed that patients with head and neck cancer had lower HO-1 expression than did those with no head and neck cancer. The findings of the present study indicated that chrysosplenol D exerts anticancer effects on OSCC by suppressing the MAPK pathway and activating HO-1 expression. Full article
(This article belongs to the Special Issue Advances in Oral Cancer: From Pathology to Treatment)
Show Figures

Graphical abstract

19 pages, 4268 KiB  
Article
Chrysosplenol d, a Flavonol from Artemisia annua, Induces ERK1/2-Mediated Apoptosis in Triple Negative Human Breast Cancer Cells
by Sophia J. Lang, Michael Schmiech, Susanne Hafner, Christian Paetz, Katharina Werner, Menna El Gaafary, Christoph Q. Schmidt, Tatiana Syrovets and Thomas Simmet
Int. J. Mol. Sci. 2020, 21(11), 4090; https://doi.org/10.3390/ijms21114090 - 8 Jun 2020
Cited by 46 | Viewed by 5275
Abstract
Triple negative human breast cancer (TNBC) is an aggressive cancer subtype with poor prognosis. Besides the better-known artemisinin, Artemisia annua L. contains numerous active compounds not well-studied yet. High-performance liquid chromatography coupled with diode-array and mass spectrometric detection (HPLC-DAD-MS) was used for the [...] Read more.
Triple negative human breast cancer (TNBC) is an aggressive cancer subtype with poor prognosis. Besides the better-known artemisinin, Artemisia annua L. contains numerous active compounds not well-studied yet. High-performance liquid chromatography coupled with diode-array and mass spectrometric detection (HPLC-DAD-MS) was used for the analysis of the most abundant compounds of an Artemisia annua extract exhibiting toxicity to MDA-MB-231 TNBC cells. Artemisinin, 6,7-dimethoxycoumarin, arteannuic acid were not toxic to any of the cancer cell lines tested. The flavonols chrysosplenol d and casticin selectively inhibited the viability of the TNBC cell lines, MDA-MB-231, CAL-51, CAL-148, as well as MCF7, A549, MIA PaCa-2, and PC-3. PC-3 prostate cancer cells exhibiting high basal protein kinase B (AKT) and no ERK1/2 activation were relatively resistant, whereas MDA-MB-231 cells with high basal ERK1/2 and low AKT activity were more sensitive to chrysosplenol d treatment. In vivo, chrysosplenol d and casticin inhibited MDA-MB-231 tumor growth on chick chorioallantoic membranes. Both compounds induced mitochondrial membrane potential loss and apoptosis. Chrysosplenol d activated ERK1/2, but not other kinases tested, increased cytosolic reactive oxygen species (ROS) and induced autophagy in MDA-MB-231 cells. Lysosomal aberrations and toxicity could be antagonized by ERK1/2 inhibition. The Artemisia annua flavonols chrysosplenol d and casticin merit exploration as potential anticancer therapeutics. Full article
Show Figures

Graphical abstract

9 pages, 277 KiB  
Article
Antiseptic Activity and Phenolic Constituents of the Aerial Parts of Vitex negundo var. cannabifolia
by Tie-Jun Ling, Wei-Wei Ling, Yuan-Jun Chen, Xiao-Chun Wan, Tao Xia, Xian-Feng Du and Zheng-Zhu Zhang
Molecules 2010, 15(11), 8469-8477; https://doi.org/10.3390/molecules15118469 - 18 Nov 2010
Cited by 48 | Viewed by 12155
Abstract
Four phenolics, salviaplebeiaside (1), γ-tocopherol (2), chrysosplenol-D (4), and isovitexin (5), along with α-tocoquinone (3) and β-sitosterol (6) were isolated from the aerial parts of Vitex negundo var. [...] Read more.
Four phenolics, salviaplebeiaside (1), γ-tocopherol (2), chrysosplenol-D (4), and isovitexin (5), along with α-tocoquinone (3) and β-sitosterol (6) were isolated from the aerial parts of Vitex negundo var. cannabifolia. The isolation was performed using bio-assay tracking experiments. The structures of compounds 1-5 were established by spectroscopic means. The antibacterial activities of the compounds were assessed against Escherichia coli, Bacillus subtilis, Micrococcus tetragenus and Pseudomonas fluorescens. Chrysosplenol-D (4) exhibited activities against all the four spoilage microorganisms. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics)
Show Figures

Figure 1

Back to TopTop