Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = challenges of deep learning in aphasia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6859 KB  
Systematic Review
A Systematic Review of Using Deep Learning in Aphasia: Challenges and Future Directions
by Yin Wang, Weibin Cheng, Fahim Sufi, Qiang Fang and Seedahmed S. Mahmoud
Computers 2024, 13(5), 117; https://doi.org/10.3390/computers13050117 - 9 May 2024
Cited by 2 | Viewed by 5596
Abstract
In this systematic literature review, the intersection of deep learning applications within the aphasia domain is meticulously explored, acknowledging the condition’s complex nature and the nuanced challenges it presents for language comprehension and expression. By harnessing data from primary databases and employing advanced [...] Read more.
In this systematic literature review, the intersection of deep learning applications within the aphasia domain is meticulously explored, acknowledging the condition’s complex nature and the nuanced challenges it presents for language comprehension and expression. By harnessing data from primary databases and employing advanced query methodologies, this study synthesizes findings from 28 relevant documents, unveiling a landscape marked by significant advancements and persistent challenges. Through a methodological lens grounded in the PRISMA framework (Version 2020) and Machine Learning-driven tools like VosViewer (Version 1.6.20) and Litmaps (Free Version), the research delineates the high variability in speech patterns, the intricacies of speech recognition, and the hurdles posed by limited and diverse datasets as core obstacles. Innovative solutions such as specialized deep learning models, data augmentation strategies, and the pivotal role of interdisciplinary collaboration in dataset annotation emerge as vital contributions to this field. The analysis culminates in identifying theoretical and practical pathways for surmounting these barriers, highlighting the potential of deep learning technologies to revolutionize aphasia assessment and treatment. This review not only consolidates current knowledge but also charts a course for future research, emphasizing the need for comprehensive datasets, model optimization, and integration into clinical workflows to enhance patient care. Ultimately, this work underscores the transformative power of deep learning in advancing aphasia diagnosis, treatment, and support, heralding a new era of innovation and interdisciplinary collaboration in addressing this challenging disorder. Full article
(This article belongs to the Special Issue Machine and Deep Learning in the Health Domain 2024)
Show Figures

Figure 1

18 pages, 306 KB  
Review
AI and Aphasia in the Digital Age: A Critical Review
by Adam John Privitera, Siew Hiang Sally Ng, Anthony Pak-Hin Kong and Brendan Stuart Weekes
Brain Sci. 2024, 14(4), 383; https://doi.org/10.3390/brainsci14040383 - 16 Apr 2024
Cited by 10 | Viewed by 7984
Abstract
Aphasiology has a long and rich tradition of contributing to understanding how culture, language, and social environment contribute to brain development and function. Recent breakthroughs in AI can transform the role of aphasiology in the digital age by leveraging speech data in all [...] Read more.
Aphasiology has a long and rich tradition of contributing to understanding how culture, language, and social environment contribute to brain development and function. Recent breakthroughs in AI can transform the role of aphasiology in the digital age by leveraging speech data in all languages to model how damage to specific brain regions impacts linguistic universals such as grammar. These tools, including generative AI (ChatGPT) and natural language processing (NLP) models, could also inform practitioners working with clinical populations in the assessment and treatment of aphasia using AI-based interventions such as personalized therapy and adaptive platforms. Although these possibilities have generated enthusiasm in aphasiology, a rigorous interrogation of their limitations is necessary before AI is integrated into practice. We explain the history and first principles of reciprocity between AI and aphasiology, highlighting how lesioning neural networks opened the black box of cognitive neurolinguistic processing. We then argue that when more data from aphasia across languages become digitized and available online, deep learning will reveal hitherto unreported patterns of language processing of theoretical interest for aphasiologists. We also anticipate some problems using AI, including language biases, cultural, ethical, and scientific limitations, a misrepresentation of marginalized languages, and a lack of rigorous validation of tools. However, as these challenges are met with better governance, AI could have an equitable impact. Full article
18 pages, 8060 KB  
Article
Empowering Hand Rehabilitation with AI-Powered Gesture Recognition: A Study of an sEMG-Based System
by Kai Guo, Mostafa Orban, Jingxin Lu, Maged S. Al-Quraishi, Hongbo Yang and Mahmoud Elsamanty
Bioengineering 2023, 10(5), 557; https://doi.org/10.3390/bioengineering10050557 - 6 May 2023
Cited by 24 | Viewed by 7261
Abstract
Stroke is one of the most prevalent health issues that people face today, causing long-term complications such as paresis, hemiparesis, and aphasia. These conditions significantly impact a patient’s physical abilities and cause financial and social hardships. In order to address these challenges, this [...] Read more.
Stroke is one of the most prevalent health issues that people face today, causing long-term complications such as paresis, hemiparesis, and aphasia. These conditions significantly impact a patient’s physical abilities and cause financial and social hardships. In order to address these challenges, this paper presents a groundbreaking solution—a wearable rehabilitation glove. This motorized glove is designed to provide comfortable and effective rehabilitation for patients with paresis. Its unique soft materials and compact size make it easy to use in clinical settings and at home. The glove can train each finger individually and all fingers together, using assistive force generated by advanced linear integrated actuators controlled by sEMG signals. The glove is also durable and long-lasting, with 4–5 h of battery life. The wearable motorized glove is worn on the affected hand to provide assistive force during rehabilitation training. The key to this glove’s effectiveness is its ability to perform the classified hand gestures acquired from the non-affected hand by integrating four sEMG sensors and a deep learning algorithm (the 1D-CNN algorithm and the InceptionTime algorithm). The InceptionTime algorithm classified ten hand gestures’ sEMG signals with an accuracy of 91.60% and 90.09% in the training and verification sets, respectively. The overall accuracy was 90.89%. It showed potential as a tool for developing effective hand gesture recognition systems. The classified hand gestures can be used as a control command for the motorized wearable glove placed on the affected hand, allowing it to mimic the movements of the non-affected hand. This innovative technology performs rehabilitation exercises based on the theory of mirror therapy and task-oriented therapy. Overall, this wearable rehabilitation glove represents a significant step forward in stroke rehabilitation, offering a practical and effective solution to help patients recover from stroke’s physical, financial, and social impact. Full article
Show Figures

Figure 1

Back to TopTop