Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = center-punching mechanical clinching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8848 KB  
Article
Optimization of a Center-Punching Mechanical Clinching Process for High-Strength Steel DP980 and Aluminum Alloy AL5052 Sheets
by Ping Qiu, Xiaoxin Lu, Boran Deng, Hong Xiao and Chao Yu
Metals 2025, 15(12), 1388; https://doi.org/10.3390/met15121388 - 18 Dec 2025
Viewed by 290
Abstract
As research on new, lightweight energy vehicles continues to develop, the application of high-strength steel sheets with tensile strength greater than 1 GPa and their mechanical clinching technology, which is associated with aluminum alloys, has emerged as a new research focus. However, due [...] Read more.
As research on new, lightweight energy vehicles continues to develop, the application of high-strength steel sheets with tensile strength greater than 1 GPa and their mechanical clinching technology, which is associated with aluminum alloys, has emerged as a new research focus. However, due to the challenges associated with the cold deformation of high-strength steel, conventional mechanical clinching processes often fail to establish effective joint interlocking, resulting in weak connections. This study proposes a center-punching mechanical clinching process for connecting DP980 high-strength steel to AL5052 aluminum alloy. The mechanical evolution during the forming process was analyzed via finite element simulation. An orthogonal experimental design was employed to optimize key geometric parameters of the punch and die, yielding the optimal configuration for the mold. Mechanical testing of the joint demonstrated average pull-out force and pull-shear forces of 1124 N and 2179 N, respectively, confirming the proposed process’s ability to successfully connect high-strength steel and aluminum alloy. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 6935 KB  
Article
Center-Punching Mechanical Clinching Process for Aluminum Alloy and Ultra-High-Strength Steel Sheets
by Ping Qiu, Xiaoxin Lu, Xuewei Dai, Boran Deng and Hong Xiao
Metals 2024, 14(10), 1190; https://doi.org/10.3390/met14101190 - 20 Oct 2024
Cited by 1 | Viewed by 1724
Abstract
In recent years, with the rapid advancement of automotive lightweight technology, the mechanical clinching process between aluminum alloy and ultra-high-strength steel sheets has received extensive attention. However, the low ductility of ultra-high-strength steel sheets often results in conventional mechanical clinching processes producing joints [...] Read more.
In recent years, with the rapid advancement of automotive lightweight technology, the mechanical clinching process between aluminum alloy and ultra-high-strength steel sheets has received extensive attention. However, the low ductility of ultra-high-strength steel sheets often results in conventional mechanical clinching processes producing joints that either fail to establish effective interlocks or cause the steel sheets to fracture. To address this issue, a novel mechanical clinching process is presented, called center-punching mechanical clinching (CPMC). This innovative process employs a method of punching, flanging, and bulging gradation to achieve the mechanical clinching of aluminum alloy and ultra-high-strength steel sheets in a single step. In order to determine the effects of different parameters on the quality and strength of the joint, an experimental study was carried out for various die depths and diameters based on the condition of constant punch size. Based on tensile and shear tests, the static strength and failure modes of CPMC joints were analyzed. The results indicated that the CPMC process significantly enhances the connectivity of joints for AA5052 aluminum alloy and DP980 ultra-high-strength steel. Optimal tensile and shear strengths of 1264 and 2249 N, respectively, were achieved at a die depth of 2.2 mm and a diameter of 10.4 mm. The CPMC process provides new ideas for the mechanical clinching of aluminum alloy and ultra-high-strength steels. Full article
Show Figures

Figure 1

Back to TopTop