Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = celiac ganglion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5857 KiB  
Article
Downregulation of Bmal1 Expression in Celiac Ganglia Protects against Hepatic Ischemia-Reperfusion Injury
by Jiarui Feng, Lilong Zhang, Enfu Xue, Zhendong Qiu, Ning Hu, Kunpeng Wang, Yingru Su and Weixing Wang
Biomolecules 2023, 13(4), 713; https://doi.org/10.3390/biom13040713 - 21 Apr 2023
Cited by 1 | Viewed by 2702
Abstract
Hepatic ischemia-reperfusion injury (HIRI) significantly contributes to liver dysfunction following liver transplantation and hepatectomy. However, the role of the celiac ganglion (CG) in HIRI remains unclear. Adeno-associated virus was used to silence Bmal1 expression in the CG of twelve beagles that were randomly [...] Read more.
Hepatic ischemia-reperfusion injury (HIRI) significantly contributes to liver dysfunction following liver transplantation and hepatectomy. However, the role of the celiac ganglion (CG) in HIRI remains unclear. Adeno-associated virus was used to silence Bmal1 expression in the CG of twelve beagles that were randomly assigned to the Bmal1 knockdown group (KO-Bmal1) and the control group. After four weeks, a canine HIRI model was established, and CG, liver tissue, and serum samples were collected for analysis. The virus significantly downregulated Bmal1 expression in the CG. Immunofluorescence staining confirmed a lower proportion of c-fos+ and NGF+ neurons in TH+ cells in the KO-Bmal1 group than in the control group. The KO-Bmal1 group exhibited lower Suzuki scores and serum ALT and AST levels than the control group. Bmal1 knockdown significantly reduced liver fat reserve, hepatocyte apoptosis, and liver fibrosis, and it increased liver glycogen accumulation. We also observed that Bmal1 downregulation inhibited the hepatic neurotransmitter norepinephrine, neuropeptide Y levels, and sympathetic nerve activity in HIRI. Finally, we confirmed that decreased Bmal1 expression in CG reduces TNF-α, IL-1β, and MDA levels and increases GSH levels in the liver. The downregulation of Bmal1 expression in CG suppresses neural activity and improves hepatocyte injury in the beagle model after HIRI. Full article
(This article belongs to the Special Issue The Advanced Research on Animal Nutrition and by-Product Treatment)
Show Figures

Figure 1

10 pages, 813 KiB  
Brief Report
Unilateral Cervical Vagotomy Modulates Immune Cell Profiles and the Response to a Traumatic Brain Injury
by M. Karen Newell-Rogers, Amanda Duong, Rizwan Nazarali, Richard P. Tobin, Susannah K. Rogers and Lee A. Shapiro
Int. J. Mol. Sci. 2022, 23(17), 9851; https://doi.org/10.3390/ijms23179851 - 30 Aug 2022
Cited by 7 | Viewed by 2891
Abstract
TBI induces splenic B and T cell expansion that contributes to neuroinflammation and neurodegeneration. The vagus nerve, the longest of the cranial nerves, is the predominant parasympathetic pathway allowing the central nervous system (CNS) control over peripheral organs, including regulation of inflammatory responses. [...] Read more.
TBI induces splenic B and T cell expansion that contributes to neuroinflammation and neurodegeneration. The vagus nerve, the longest of the cranial nerves, is the predominant parasympathetic pathway allowing the central nervous system (CNS) control over peripheral organs, including regulation of inflammatory responses. One way this is accomplished is by vagus innervation of the celiac ganglion, from which the splenic nerve innervates the spleen. This splenic innervation enables modulation of the splenic immune response, including splenocyte selection, activation, and downstream signaling. Considering that the left and right vagus nerves have distinct courses, it is possible that they differentially influence the splenic immune response following a CNS injury. To test this possibility, immune cell subsets were profiled and quantified following either a left or a right unilateral vagotomy. Both unilateral vagotomies caused similar effects with respect to the percentage of B cells and in the decreased percentage of macrophages and T cells following vagotomy. We next tested the hypothesis that a left unilateral vagotomy would modulate the splenic immune response to a traumatic brain injury (TBI). Mice received a left cervical vagotomy or a sham vagotomy 3 days prior to a fluid percussion injury (FPI), a well-characterized mouse model of TBI that consistently elicits an immune and neuroimmune response. Flow cytometric analysis showed that vagotomy prior to FPI resulted in fewer CLIP+ B cells, and CD4+, CD25+, and CD8+ T cells. Vagotomy followed by FPI also resulted in an altered distribution of CD11bhigh and CD11blow macrophages. Thus, transduction of immune signals from the CNS to the periphery via the vagus nerve can be targeted to modulate the immune response following TBI. Full article
Show Figures

Figure 1

7 pages, 1445 KiB  
Article
Median Arcuate Ligament Syndrome Clinical Presentation, Pathophysiology, and Management: Description of Four Cases
by Ihsan Al Bayati, Mahesh Gajendran, Brian R. Davis, Jesus R. Diaz and Richard W. McCallum
Gastrointest. Disord. 2021, 3(1), 44-50; https://doi.org/10.3390/gidisord3010005 - 26 Feb 2021
Cited by 9 | Viewed by 10770
Abstract
Median arcuate ligament syndrome (MALS), otherwise called celiac artery compression syndrome (CACS), is an uncommon disorder that results from an anatomical compression of the celiac axis and/or celiac ganglion by the MAL. Patients typically present with abdominal pain of unknown etiology exacerbated by [...] Read more.
Median arcuate ligament syndrome (MALS), otherwise called celiac artery compression syndrome (CACS), is an uncommon disorder that results from an anatomical compression of the celiac axis and/or celiac ganglion by the MAL. Patients typically present with abdominal pain of unknown etiology exacerbated by eating along with nausea, vomiting, and weight loss. MALS is a diagnosis of exclusion that should be considered in patients with severe upper abdominal pain, which does not correlate with the objective findings. The cardinal feature which is elicited in the diagnosis of MALS relies on imaging studies of the celiac artery, demonstrating narrowing during expiration. The definitive treatment is the median arcuate ligament’s surgical release to achieve surgical decompression of the celiac plexus by division of the MAL. This article describes our experience with this entity, focusing on symptom presentation, diagnostic challenges, and management, including long-term follow-up in four cases. Full article
Show Figures

Figure 1

10 pages, 2610 KiB  
Article
The Roles of Celiac Trunk Angle and Vertebral Origin in Median Arcuate Ligament Syndrome
by Ryan P. Dyches, Kelsey J. Eaton and Heather F. Smith
Diagnostics 2020, 10(2), 76; https://doi.org/10.3390/diagnostics10020076 - 31 Jan 2020
Cited by 19 | Viewed by 11565
Abstract
Median arcuate ligament syndrome (MALS) is a rarely diagnosed condition resulting from compression of the celiac trunk (CT) by the median arcuate ligament (MAL) of the diaphragm. Ischemia due to reduced blood flow through the CT and/or neuropathic pain resulting from celiac ganglion [...] Read more.
Median arcuate ligament syndrome (MALS) is a rarely diagnosed condition resulting from compression of the celiac trunk (CT) by the median arcuate ligament (MAL) of the diaphragm. Ischemia due to reduced blood flow through the CT and/or neuropathic pain resulting from celiac ganglion compression may result in a range of gastrointestinal symptoms, including nausea, postprandial discomfort, and weight loss. However, the mechanism of compression and its anatomical correlates have been incompletely delineated. It has been hypothesized that CT angle of origination may be more acute in individuals with MALS. Here, frequency of anatomical variation in the MAL and CT were assessed in 35 cadaveric subjects (17M/18F), including the vertebral level of origin of CT and superior mesenteric artery (SMA), the distance between CT and MAL and SMA, the angles of origination of CT and SMA, the diameter at the CT base, and MAL/CT overlap. Females exhibited significantly higher rates of inferred MAL/CT overlap than males. Significant correlations were revealed between MAL/CT overlap and angles of origination of the CT and SMA. Vertebral level of origin of the CT in individuals with MAL/CT overlap was not significantly more superior than in those without. This study also revealed a significant relationship between MAL/CT overlap and angle of origination of the CT, which has clinical implications for understanding the anatomy associated with MALS. Full article
(This article belongs to the Special Issue Anatomical Variation and Clinical Diagnosis)
Show Figures

Figure 1

12 pages, 4057 KiB  
Article
Pitfalls in Gallium-68 PSMA PET/CT Interpretation—A Pictorial Review
by Deepa Shetty, Dhruv Patel, Ken Le, Chuong Bui and Robert Mansberg
Tomography 2018, 4(4), 182-193; https://doi.org/10.18383/j.tom.2018.00021 - 1 Dec 2018
Cited by 95 | Viewed by 2675
Abstract
The novel Gallium-68 prostate-specific membrane antigen (PSMA)-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-diacetic acid positron emission tomography (PET) tracer is increasingly used in the evaluation of prostate cancer, particularly in the detection of recurrent disease. However, PSMA is expressed in nonprostatic tissues, as well as in other [...] Read more.
The novel Gallium-68 prostate-specific membrane antigen (PSMA)-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-diacetic acid positron emission tomography (PET) tracer is increasingly used in the evaluation of prostate cancer, particularly in the detection of recurrent disease. However, PSMA is expressed in nonprostatic tissues, as well as in other pathologic conditions. Here we illustrate such interpretive pitfalls with relevant images that one may encounter while reporting PSMA PET/CT. This study aims to show variation in physiological distribution of PSMA activity and uptake in various benign and neoplastic disorders that may be misinterpreted as prostatic metastatic disease. These pitfalls are illustrated to enhance awareness, aiding a more accurate interpretation of the study. Retrospective database of all (68)Ga PSMA PET/CT was created and reviewed. In total, 1115 PSMA PET/CT studies performed between February 27, 2015, and May 31, 2017, were reviewed. Any unusual uptake of PSMA was documented, described, and followed up. All cases were then subdivided into the following 4 categories: physiological uptake, benign pathological uptake, nonprostatic neoplastic uptake, and miscellaneous uptake. A variety of nonprostatic tissues and lesions, including accessory salivary gland, celiac ganglion, gall bladder, Paget's bone disease, reactive lymph nodes, non–small cell lung cancer, renal cell cancer, and neuroendocrine tumor, were found to show PSMA uptake. PSMA uptake is not prostate-specific and can be taken up physiologically and pathologically in nonprostatic tissue. It is important for reporting physicians to recognize these findings and instigate appropriate investigations when required while avoiding unnecessary procedures in physiological variation. Full article
Back to TopTop