Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = carbon quantum dots/iron oxide composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4937 KiB  
Article
Magnetic Carbon Quantum Dots/Iron Oxide Composite Based on Waste Rice Noodle and Iron Oxide Scale: Preparation and Photocatalytic Capability
by Wanying Ying, Qing Liu, Xinyan Jin, Guanzhi Ding, Mengyu Liu, Pengyu Wang and Shuoping Chen
Nanomaterials 2023, 13(18), 2506; https://doi.org/10.3390/nano13182506 - 6 Sep 2023
Cited by 9 | Viewed by 2212
Abstract
To provide an economical magnetic photocatalyst and introduce an innovative approach for efficiently utilizing discarded waste rice noodle (WRN) and iron oxide scale (IOS), we initially converted WRN into carbon quantum dots (CQDs) using a hydrothermal method, simultaneously calcining IOS to obtain iron [...] Read more.
To provide an economical magnetic photocatalyst and introduce an innovative approach for efficiently utilizing discarded waste rice noodle (WRN) and iron oxide scale (IOS), we initially converted WRN into carbon quantum dots (CQDs) using a hydrothermal method, simultaneously calcining IOS to obtain iron oxide (FeOx). Subsequently, we successfully synthesized a cost-effective, magnetic CQDs/FeOx photocatalytic composite for the first time by combining the resulting CQDs and FeOx. Our findings demonstrated that calcining IOS in an air atmosphere enhanced the content of photocatalytically active α-Fe2O3, while incorporating WRN-based CQDs into FeOx improved the electron-hole pair separation, resulting in increased O2 reduction and H2O oxidation. Under optimized conditions (IOS calcination temperature: 300 °C; carbon loading: 11 wt%), the CQDs/FeOx composite, utilizing WRN and IOS as its foundation, exhibited exceptional and reusable capabilities in photodegrading methylene blue and tetracycline. Remarkably, for methylene blue, it achieved an impressive degradation rate of 99.30% within 480 min, accompanied by a high degradation rate constant of 5.26 × 10−3 min−1. This composite demonstrated reusability potential for up to ten photocatalytic cycles without a significant reduction in the degradation efficiency, surpassing the performance of IOS and FeOx without CQDs. Notably, the composite exhibited strong magnetism with a saturation magnetization strength of 34.7 emu/g, which enables efficient and convenient recovery in photocatalytic applications. This characteristic is highly advantageous for the large-scale industrial utilization of photocatalytic water purification. Full article
(This article belongs to the Special Issue Semiconductor Quantum Dots: Synthesis, Properties and Applications)
Show Figures

Figure 1

15 pages, 2070 KiB  
Review
Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications
by Yuliya A. Podkolodnaya, Alina A. Kokorina, Tatiana S. Ponomaryova, Olga A. Goryacheva, Daniil D. Drozd, Mikhail S. Khitrov, Lingting Huang, Zhichao Yu, Dianping Tang and Irina Yu. Goryacheva
Biosensors 2022, 12(6), 392; https://doi.org/10.3390/bios12060392 - 6 Jun 2022
Cited by 9 | Viewed by 3678
Abstract
Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a [...] Read more.
Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a mixture of nanostructures after synthesis and the dependence of their properties on the environment and the aggregate state. The application of a silica matrix to obtain luminescent composite particles minimizes these problems and improves optical properties, reduces photoluminescence quenching, and leads to wider applications. We describe two methods for the formation of silica composites containing CNSs: inclusion of CNSs into silica particles and their grafting onto the silica surface. Moreover, we present approaches to the synthesis of multifunctional particles. They combine the unique properties of silica and fluorescent CNSs, as well as magnetic, photosensitizing, and luminescent properties via the combination of functional nanoparticles such as iron oxide nanoparticles, titanium dioxide nanoparticles, quantum dots (QDs), and gold nanoclusters (AuNCs). Lastly, we discuss the advantages and challenges of these structures and their applications. The novelty of this review involves the detailed description of the approaches for the silica application as a matrix for the CNSs. This will support researchers in solving fundamental and applied problems of this type of carbon-based nanoobjects. Full article
Show Figures

Figure 1

18 pages, 5490 KiB  
Article
Carbon Dots/Iron Oxide Nanoparticles with Tuneable Composition and Properties
by Joanna D. Stachowska, Monika B. Gamża, Claire Mellor, Ella N. Gibbons, Marta J. Krysmann, Antonios Kelarakis, Elżbieta Gumieniczek-Chłopek, Tomasz Strączek, Czesław Kapusta and Anna Szwajca
Nanomaterials 2022, 12(4), 674; https://doi.org/10.3390/nano12040674 - 17 Feb 2022
Cited by 13 | Viewed by 4087
Abstract
We present a simple strategy to generate a family of carbon dots/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor (derived via thermal treatment of ethanolamine and citric acid [...] Read more.
We present a simple strategy to generate a family of carbon dots/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor (derived via thermal treatment of ethanolamine and citric acid at 180 °C), while polyethylene glycol serves as the passivation agent. By varying the molar ratio of the reactants, a series of C/Fe-NPs have been synthesized with tuneable elemental composition in terms of C, H, O, N and Fe. The quantum yield is enhanced from 6 to 9% as the carbon content increases from 27 to 36 wt%, while the room temperature saturation magnetization is improved from 4.1 to 17.7 emu/g as the iron content is enriched from 17 to 31 wt%. In addition, the C/Fe-NPs show excellent antimicrobial properties, minimal cytotoxicity and demonstrate promising bioimaging capabilities, thus showing great potential for the development of advanced diagnostic tools. Full article
(This article belongs to the Special Issue Carbon Dots: Structure, Properties and Emerging Applications)
Show Figures

Figure 1

Back to TopTop