Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = carbon black nano-particles (CBNPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2768 KiB  
Article
Performance Evaluation of Carbon Black Nano-Particle Reinforced Asphalt Mixture
by Javaria Rafi, Mumtaz Ahmed Kamal, Naveed Ahmad, Murryam Hafeez, Muhammad Faizan ul Haq, Syeda Aamara Asif, Faisal Shabbir and Syed Bilal Ahmed Zaidi
Appl. Sci. 2018, 8(7), 1114; https://doi.org/10.3390/app8071114 - 10 Jul 2018
Cited by 30 | Viewed by 5785
Abstract
Applications of nanotechnology in the pavement industry have increased rapidly during the last decade in order to enhance a pavement’s sustainability and durability. Conventional asphalt binder generally does not provide sufficient resistance against rutting at high temperatures. Carbon black nano-particles (CBNPs, produced by [...] Read more.
Applications of nanotechnology in the pavement industry have increased rapidly during the last decade in order to enhance a pavement’s sustainability and durability. Conventional asphalt binder generally does not provide sufficient resistance against rutting at high temperatures. Carbon black nano-particles (CBNPs, produced by perennial mountain trees’ carbonization) were mixed into the performance grade (PG) 58 asphalt binder in this study. Conventional asphalt binder tests (penetration, ductility and softening point), frequency sweep, performance grading, and bitumen bond strength tests were conducted to study the enhancement in the properties of asphalt binder. Dynamic modulus and wheel tracking tests were also performed to investigate the effect of CBNPs on asphalt mixture properties. Experimental results demonstrated that preferred dosage of CBNPs in asphalt is 10% by weight of the bitumen. Results of scanning electron microscopy (SEM) and storage stability tests validated homogenous and stable dispersion of CBNPs in the asphalt binder. Asphalt mixtures became stiffer and resistant to rutting at high temperatures by addition of CBNPs in asphalt binder. Significant improvement in bitumen aggregate bond strength was also observed by incorporating CBNPs. It is concluded that CBNPs can be used to effectively enhance the high-temperature performance and consequently the sustainability of flexible pavements. Full article
Show Figures

Figure 1

18 pages, 1888 KiB  
Article
Low Dose Carbon Black Nanoparticle Exposure Does Not Aggravate Allergic Airway Inflammation in Mice Irrespective of the Presence of Surface Polycyclic Aromatic Hydrocarbons
by Karina Lindner, Sina Webering, Michael Stroebele, Henning Bockhorn, Tanja Hansen, Peter König and Heinz Fehrenbach
Nanomaterials 2018, 8(4), 213; https://doi.org/10.3390/nano8040213 - 31 Mar 2018
Cited by 7 | Viewed by 6010
Abstract
Exposure to exogenous noxae, such as particulate matter, can trigger acute aggravations of allergic asthma—a chronic inflammatory airway disease. We tested whether Carbon Black nanoparticles (CBNP) with or without surface polycyclic aromatic hydrocarbons (PAH) aggravate an established allergic airway inflammation in mice. In [...] Read more.
Exposure to exogenous noxae, such as particulate matter, can trigger acute aggravations of allergic asthma—a chronic inflammatory airway disease. We tested whether Carbon Black nanoparticles (CBNP) with or without surface polycyclic aromatic hydrocarbons (PAH) aggravate an established allergic airway inflammation in mice. In an ovalbumin mouse model, Printex®90 (P90), P90 coated with benzo[a]pyrene (P90-BaP) or 9-nitroanthracene (P90-9NA), or acetylene soot exhibiting a mixture of surface PAH (AS-PAH) was administered twice (70 µL, 100 µg/mL) during an established allergic airway inflammation. We analyzed the immune cell numbers and chemokine/cytokine profiles in bronchoalveolar lavages, the mRNA expressions of markers for PAH metabolism (Cyp1a1, 1b1), oxidative stress (HO-1, Gr, Gpx-3), inflammation (KC, Mcp-1, IL-6, IL-13, IL-17a), mucin synthesis (Muc5ac, Muc5b), the histology of mucus-producing goblet cells, ciliary beat frequency (CBF), and the particle transport speed. CBNP had a comparable primary particle size, hydrodynamic diameter, and ζ-potential, but differed in the specific surface area (P90 > P90-BaP = P90-9NA = AS-PAH) and surface chemistry. None of the CBNP tested increased any parameter related to inflammation. The unmodified P90, however, decreased the tracheal CBF, decreased the Muc5b in intrapulmonary airways, but increased the tracheal Muc5ac. Our results demonstrated that irrespective of the surface PAH, a low dose of CBNP does not acutely aggravate an established allergic airway inflammation in mice. Full article
(This article belongs to the Special Issue Nanosafety 2017)
Show Figures

Figure 1

Back to TopTop