Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = carbethopendecinium bromide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2026 KB  
Article
Compositional and Temperature Effects on the Rheological Properties of Polyelectrolyte–Surfactant Hydrogels
by Jiří Smilek, Sabína Jarábková, Tomáš Velcer and Miloslav Pekař
Polymers 2019, 11(5), 927; https://doi.org/10.3390/polym11050927 - 27 May 2019
Cited by 24 | Viewed by 4629
Abstract
The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a [...] Read more.
The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant. The effects of the preparation method, surfactant concentration, ionic strength (the concentration of NaCl background electrolyte), pH (buffers), multivalent cations, and elevated temperature on the properties were investigated. The formation of gels required an optimum ionic strength (set by the NaCl solution), ranging from 0.15–0.3 M regardless of the type of hydrogel system and surfactant concentration. The other compositional effects and the effect of temperature were dependent on the polyelectrolyte type or its molecular weight. General differences between the behaviour of hyaluronan-based and cationized dextran-based materials were attributed to differences in the chain conformations of the two biopolymers and in the accessibility of their charged groups. Full article
(This article belongs to the Special Issue Polymer Biointerfaces)
Show Figures

Figure 1

Back to TopTop