Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = capybara oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2053 KiB  
Article
Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae)
by Adalberto Alves Pereira Filho, Vladimir Fazito do Vale, Caio Marcio de Oliveira Monteiro, Mayara Macedo Barrozo, Mariana Alves Stanton, Lydia Fumiko Yamaguchi, Massuo Jorge Kato and Ricardo Nascimento Araújo
Int. J. Mol. Sci. 2024, 25(10), 5420; https://doi.org/10.3390/ijms25105420 - 16 May 2024
Cited by 4 | Viewed by 2237
Abstract
Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of [...] Read more.
Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), β-esterase (β-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations. Full article
Show Figures

Figure 1

17 pages, 5468 KiB  
Article
Capybara Oil Improves Renal Pathophysiology and Inflammation in Obese Mice
by Priscila G. Pereira, Luciana L. Alves, Bianca T. Ciambarella, Kíssila Rabelo, Ana Lúcia R. Nascimento, Alan Cesar N. Moraes, Andressa Bernardi, Fernanda V. Guimarães, Gabriela M. Carvalho, Jemima F. R. da Silva and Jorge J. de Carvalho
Nutrients 2023, 15(13), 2925; https://doi.org/10.3390/nu15132925 - 28 Jun 2023
Cited by 1 | Viewed by 2264
Abstract
Obesity is an inflammatory disease associated with secondary diseases such as kidney disease, which can cause lipotoxicity, inflammation and loss of organ function. Polyunsaturated fatty acids act in the production of lipid mediators and have anti-inflammatory characteristics. In this work, the objective was [...] Read more.
Obesity is an inflammatory disease associated with secondary diseases such as kidney disease, which can cause lipotoxicity, inflammation and loss of organ function. Polyunsaturated fatty acids act in the production of lipid mediators and have anti-inflammatory characteristics. In this work, the objective was to evaluate renal histopathology in obese mice and the effects of treatment with capybara oil (CO) (5000 mg/kg/day for 4 weeks). Parameters such as body mass, lipid profile, systolic blood pressure, urinary creatinine and protein excretion, structure and ultrastructure of the renal cortex, fibrosis, tissue inflammation and oxidative stress were analyzed. CO treatment in obese mice showed improvement in the lipid profile and reduction in systolic blood pressure levels, in addition to beneficial remodeling of the renal cortex. Our data demonstrated that CO decreased inflammation, oxidative stress and renal fibrosis, as evidenced by quantifying the expression of TNF-α, IL-10, CAT, SOD, α-SMA and TGF-β. Although treatment with CO did not show improvement in renal function, ultrastructural analysis showed that the treatment was effective in restoring podocytes and pedicels, with restructuring of the glomerular filtration barrier. These results demonstrate, for the first time, that treatment with CO is effective in reducing kidney damage, being considered a promising treatment for obesity. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

Back to TopTop