Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = capsicum chlorosis orthotospovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8731 KiB  
Article
Involvement of MicroRNAs in the Hypersensitive Response of Capsicum Plants to the Capsicum Chlorosis Virus at Elevated Temperatures
by Wei-An Tsai, Christopher A. Brosnan, Neena Mitter and Ralf G. Dietzgen
Pathogens 2024, 13(9), 745; https://doi.org/10.3390/pathogens13090745 - 31 Aug 2024
Viewed by 1211
Abstract
The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature [...] Read more.
The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored. Thus, this study aimed to investigate how high temperature (HT) influences the response of CaCV-resistant capsicum to the virus. Phenotypic analysis revealed a compromised resistance in capsicum plants grown at HT, with systemic necrotic spots appearing in 8 out of 14 CaCV-infected plants. Molecular analysis through next-generation sequencing identified 105 known and 83 novel microRNAs (miRNAs) in CaCV-resistant capsicum plants. Gene ontology revealed that phenylpropanoid and lignin metabolic processes, regulated by Can-miR408a and Can- miR397, are likely involved in elevated-temperature-mediated resistance-breaking responses. Additionally, real-time PCR validated an upregulation of Can-miR408a and Can-miR397 by CaCV infection at HT; however, only the Laccase 4 transcript, targeted by Can-miR397, showed a tendency of negative correlation with this miRNA. Overall, this study provides the first molecular insights into how elevated temperature affects CaCV resistance in capsicum plants and reveals the potential role of miRNA in temperature-sensitive tospovirus resistance. Full article
Show Figures

Figure 1

16 pages, 3150 KiB  
Article
A Simplified Multiplex PCR Assay for Simultaneous Detection of Six Viruses Infecting Diverse Chilli Species in India and Its Application in Field Diagnosis
by Oinam Priyoda Devi, Susheel Kumar Sharma, Keithellakpam Sanatombi, Konjengbam Sarda Devi, Neeta Pathaw, Subhra Saikat Roy, Ngathem Taibangnganbi Chanu, Rakesh Sanabam, Huirem Chandrajini Devi, Akoijam Ratankumar Singh and Virendra Kumar Baranwal
Pathogens 2023, 12(1), 6; https://doi.org/10.3390/pathogens12010006 - 21 Dec 2022
Cited by 8 | Viewed by 3337
Abstract
Chilli is infected by at least 65 viruses globally, with a mixed infection of multiple viruses leading to severe losses being a common occurrence. A simple diagnostic procedure that can identify multiple viruses at once is required to track their spread, initiate management [...] Read more.
Chilli is infected by at least 65 viruses globally, with a mixed infection of multiple viruses leading to severe losses being a common occurrence. A simple diagnostic procedure that can identify multiple viruses at once is required to track their spread, initiate management measures and manage them using virus-free planting supplies. The present study, for the first time, reports a simplified and robust multiplex PCR (mPCR) assay for the simultaneous detection of five RNA viruses, capsicum chlorosis orthotospovirus (CaCV), chilli veinal mottle virus (ChiVMV), large cardamom chirke virus (LCCV), cucumber mosaic virus (CMV), and pepper mild mottle virus (PMMoV), and a DNA virus, chilli leaf curl virus (ChiLCV) infecting chilli. The developed mPCR employed six pairs of primer from the conserved coat protein (CP) region of the respective viruses. Different parameters viz., primer concentration (150–450 nM) and annealing temperature (50 °C), were optimized in order to achieve specific and sensitive amplification of the target viruses in a single reaction tube. The detection limit of the mPCR assay was 5.00 pg/µL to simultaneously detect all the target viruses in a single reaction, indicating a sufficient sensitivity of the developed assay. The developed assay showed high specificity and showed no cross-amplification. The multiplex PCR assay was validated using field samples collected across Northeast India. Interestingly, out of 61 samples collected across the northeastern states, only 22 samples (36%) were positive for single virus infection while 33 samples (54%) were positive for three or more viruses tested in mPCR, showing the widespread occurrence of mixed infection under field conditions. To the best of our knowledge, this is the first report on the development and field validation of the mPCR assay for six chilli viruses and will have application in routine virus indexing and virus management. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Plant Viruses in a Context of Global Change)
Show Figures

Figure 1

Back to TopTop