Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = canine endometrial mesenchymal stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2471 KiB  
Article
Canine Endometrial Mesenchymal Stem Cells: Characterization and Functional Assessment for Cartilage Repair
by Zuzana Vikartovska, Marcela Maloveska, Natalia Nosalova, Lubica Hornakova, Mykhailo Huniadi, Nikola Hudakova, Slavomir Hornak, Blazej Kalinaj, Peter Kubatka and Dasa Cizkova
Int. J. Mol. Sci. 2025, 26(16), 8091; https://doi.org/10.3390/ijms26168091 - 21 Aug 2025
Abstract
Endometrial mesenchymal stem cells (eMSCs) are a novel and biologically potent source of multipotent stromal cells with potential beyond reproductive medicine. This study explored their phenotypic profile, trilineage differentiation, and the cytoprotective effects of their conditioned media (eMSCCM) on oxidatively stressed neonatal and [...] Read more.
Endometrial mesenchymal stem cells (eMSCs) are a novel and biologically potent source of multipotent stromal cells with potential beyond reproductive medicine. This study explored their phenotypic profile, trilineage differentiation, and the cytoprotective effects of their conditioned media (eMSCCM) on oxidatively stressed neonatal and adult chondrocytes. Canine eMSCs displayed typical fibroblast-like morphology and expressed high levels of mesenchymal surface markers CD29 and CD44, low hematopoietic markers CD34/CD45, and variable CD90, confirming a mesenchymal identity. Differentiation assays revealed osteogenic and chondrogenic differentiation, whereas adipogenic activity was limited. Using eMSCCM at 25% and 50% concentrations, chondrocyte viability was assessed after exposure to 200 µM H2O2. eMSCCM significantly enhanced the viability of H2O2-stressed chondrocytes in a dose-dependent manner, particularly at 50%, with marked effects at 24 and 48 h. Although metabolic activity declined at 72 h, the treated cells remained more metabolically active than untreated controls. These findings suggest that eMSCCM offers promising cytoprotective effects for cartilage-related oxidative stress conditions. Full article
Show Figures

Graphical abstract

Back to TopTop