Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = calcium superphosphate (CaSSP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1937 KiB  
Article
Effect of Different Types of Phosphate Fertilizer on Phosphorus Absorption and Desorption in Acidic Red Soil of Southwest China
by Long Zhou, Lizhen Su, Lianya Zhang, Lu Zhang, Yi Zheng and Li Tang
Sustainability 2022, 14(16), 9973; https://doi.org/10.3390/su14169973 - 12 Aug 2022
Cited by 8 | Viewed by 4112
Abstract
The effects of different types of phosphate fertilization on the phosphorus (P) adsorption-desorption in low-P red soil remain unclear. A field plot location test was carried out, and fifteen red soil samples were collected at depths of 0–20 cm from five phosphate fertilizers [...] Read more.
The effects of different types of phosphate fertilization on the phosphorus (P) adsorption-desorption in low-P red soil remain unclear. A field plot location test was carried out, and fifteen red soil samples were collected at depths of 0–20 cm from five phosphate fertilizers (CK—no-phosphate, SSP—single superphosphate, CMP—calcium magnesium phosphate, MAP—monoammonium phosphate, and DAP—diammonium phosphate) after the maize was harvested to evaluate the soil physicochemical properties, P adsorption, and desorption characteristics. The structural equation model (SEM) and adjacent tree method (ABT) were used to quantitatively analyze the relative contribution of P adsorption and desorption. The yield, P accumulation, and the P use efficiency of maize were the highest under SSP and CMP treatments. The P adsorption amount was CK > DAP > MAP > CMP > SSP, and the P desorption amount was DAP > MAP > CMP > SSP > CK. Compared with the CK treatment, P adsorption of other P treatments reduced by an average of 21.4%, while P desorption increased by 154.8%. The effect of different types of phosphate fertilizers on soil P adsorption was mainly through regulation of soil organic matter (SOM) and Olsen P, and the effect on soil P desorption was mainly through regulation of SOM and CaCO3. Al2O3 had the greatest effect on P adsorption with a relative contribution rate of 31.52%, and SOM had the greatest effect on P desorption with a relative contribution rate of 53.04%. SSP and CMP treatments had an optimal matching with acidic red soil, which can promote P adsorption, effectively slow down P loss, improve P utilization, and increase crop yield. Full article
Show Figures

Figure 1

14 pages, 1449 KiB  
Article
Decreased Methane Emissions Associated with Methanogenic and Methanotrophic Communities in a Pig Manure Windrow Composting System under Calcium Superphosphate Amendment
by Yihe Zhang, Mengyuan Huang, Fengwei Zheng, Shumin Guo, Xiuchao Song, Shuwei Liu, Shuqing Li and Jianwen Zou
Int. J. Environ. Res. Public Health 2021, 18(12), 6244; https://doi.org/10.3390/ijerph18126244 - 9 Jun 2021
Cited by 8 | Viewed by 2907
Abstract
With the rapid growth of livestock breeding, manure composting has evolved to be an important source of atmospheric methane (CH4) which accelerates global warming. Calcium superphosphate (CaSSP), as a commonly used fertilizer, was proposed to be effective in reducing CH4 [...] Read more.
With the rapid growth of livestock breeding, manure composting has evolved to be an important source of atmospheric methane (CH4) which accelerates global warming. Calcium superphosphate (CaSSP), as a commonly used fertilizer, was proposed to be effective in reducing CH4 emissions from manure composting, but the intrinsic biological mechanism remains unknown. Methanogens and methanotrophs both play a key role in mediating CH4 fluxes, therefore we hypothesized that the CaSSP-mediated reduction in CH4 emissions was attributed to the shift of methanogens and methanotrophs, which was regulated by physicochemical parameter changes. To test this hypothesis, a 60-day pig manure windrow composting experiment was conducted to investigate the response of CH4 emissions to CaSSP amendment, with a close linkage to methanogenic and methanotrophic communities. Results showed that CaSSP amendment significantly reduced CH4 emissions by 49.5% compared with the control over the whole composting period. The decreased mcrA gene (encodes the α-subunit of methyl-coenzyme M reductase) abundance in response to CaSSP amendment suggested that the CH4 emissions were reduced primarily due to the suppressed microbial CH4 production. Illumina MiSeq sequencing analysis showed that the overall distribution pattern of methanogenic and methanotrophic communities were significantly affected by CaSSP amendment. Particularly, the relative abundance of Methanosarcina that is known to be a dominant group for CH4 production, significantly decreased by up to 25.3% accompanied with CaSSP addition. Only Type I methanotrophs was detected in our study and Methylocaldum was the dominant methanotrophs in this composting system; in detail, CaSSP amendment increased the relative abundance of OTUs belong to Methylocaldum and Methylobacter. Moreover, the increased SO42− concentration and decreased pH acted as two key factors influencing the methanogenic and methanotrophic composition, with the former has a negative effect on methanogenesis growth and can later promote CH4 oxidation at a low level. This study deepens our understanding of the interaction between abiotic factors, function microbiota and greenhouse gas (GHG) emissions, as well as provides implication for practically reducing composting GHG emissions. Full article
Show Figures

Figure 1

11 pages, 1912 KiB  
Article
Calcium Superphosphate-Mediated Reshaping of Denitrifying Bacteria Community Contributed to N2O Mitigation in Pig Manure Windrow Composting
by Yaguo Jin, Yingcheng Miao, Yajun Geng, Mengyuan Huang, Yihe Zhang, Xiuchao Song, Shuqing Li and Jianwen Zou
Int. J. Environ. Res. Public Health 2021, 18(1), 171; https://doi.org/10.3390/ijerph18010171 - 29 Dec 2020
Cited by 4 | Viewed by 2498
Abstract
Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during [...] Read more.
Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during composting are reported to be controversial, and the intrinsic microbial mechanism remains unclear. Here, a pig manure windrow composting experiment lasting for ~60 days was performed to evaluate the effects of CaSSP amendment (5%, w/w) on N2O fluxes in situ, and to determine the denitrifiers’ response, and their driving factors. Results indicated that CaSSP amendment significantly reduced N2O emissions as compared to the control pile (maximum N2O emission rate reduced by 64.5% and total emission decreased by 49.8%). CaSSP amendment reduced the abundance of nirK gene encoding for nitrite reductase, while the abundance of nosZ gene (N2O reductase) was enriched. Finally, we built a schematic model and indicated that the abundance of nirK gene was likely to play a key role in mediating N2O production, which were correlated with NH4+-N and NO3-N changing responsive to CaSSP. Our finding implicates that CaSSP application could be a potential strategy for N2O mitigation in manure windrow composting, and the revealed microbial mechanism is helpful for deepening the understanding of the interaction among N-cycle functional genes, physicochemical factors, and greenhouse gases (GHG) emissions. Full article
Show Figures

Figure 1

Back to TopTop