Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = calcined partially stabilized zirconia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3908 KiB  
Article
Phase Formation and Stabilization Behavior of Ca-PSZ by Post-Heat Treatment II: CaOx-ZrO2(1 − x) (x = 5–10 mol%)
by Hyunjo Yoo, Juyoung Kim, Hwanseok Lee, Ilguk Jo and Heesoo Lee
Metals 2023, 13(10), 1659; https://doi.org/10.3390/met13101659 - 27 Sep 2023
Cited by 6 | Viewed by 1425
Abstract
The effects of CaO content and post-heat treatment were investigated on the phase stability and mechanical and thermal properties of Ca-PSZ. ZrO2 specimens with 5–10 mol% CaO were sintered, and post-heat treatment was performed at 1200 °C for 100 h. Subsequently, to [...] Read more.
The effects of CaO content and post-heat treatment were investigated on the phase stability and mechanical and thermal properties of Ca-PSZ. ZrO2 specimens with 5–10 mol% CaO were sintered, and post-heat treatment was performed at 1200 °C for 100 h. Subsequently, to test and analyze the crystal structure and the microstructure, the mechanical and thermal properties of the specimens were evaluated. All specimens were partially stabilized by 5–10 mol% CaO (5CSZ–10CSZ) in a mixed monoclinic and tetragonal phase; however, peaks of the secondary phase of CaZrO3 were observed in 10CSZ. The ratio of the monoclinic phase decreased from 62.50% (5CSZ) to 21.02% (10CSZ) as the CaO content increased. Additionally, the monoclinic phase ratio decreased from 59.38% (5CSZ) to 19.57% (9CSZ) after the post-heat treatment; an increase to 24.84% was observed for 10CSZ. An increase in Vickers hardness from 676.02 to 1256.25 HV and flexural strength from 437.7 to 842.7 MPa was observed with increasing CaO content. The post-heat treatment resulted in further increases in these values as the CaO content increased from 5CSZ to 9CSZ; however, the Vickers hardness and flexural strength of 10CSZ decreased by approximately 8% and 9%, respectively. The thermal expansion coefficient exhibited the same tendency as the mechanical properties. This coefficient increased from 8.229 × 10−6 to 9.448 × 10−6 K−1 with increasing CaO content and was enhanced after the post-heat treatment in 5CSZ to 9CSZ; however, the thermal expansion coefficient of 10CSZ decreased by approximately 4% after the post-heat treatment. The mechanically and thermally stable tetragonal phase increased, and the monoclinic phase decreased as the doped Ca replaced the Zr sites, as was confirmed by the X-ray diffraction (XRD) analysis. The post-heat treatment and the increased Ca addition further facilitated the replacement of Zr sites by Ca. However, at high Ca concentrations of 10CSZ, an equilibrium phase of CaZrO3 was formed as a secondary phase at the post-heat treatment temperature, resulting in low performance. Full article
Show Figures

Figure 1

12 pages, 2880 KiB  
Article
Evaluation of Structural Stability, Mechanical Properties, and Corrosion Resistance of Magnesia Partially Stabilized Zirconia (Mg-PSZ)
by Dedek Yusuf, Eneng Maryani, Deby Fajar Mardhian and Atiek Rostika Noviyanti
Molecules 2023, 28(16), 6054; https://doi.org/10.3390/molecules28166054 - 14 Aug 2023
Cited by 12 | Viewed by 2754
Abstract
Nano Zirconia (ZrO2) has been used in dental implants due to having excellent mechanical properties and biocompatibility that match the requirements for the purpose. Zirconia undergoes phase transformation during heating: monoclinic (room temperature to 1170 °C), tetragonal (1170 °C to 2370 [...] Read more.
Nano Zirconia (ZrO2) has been used in dental implants due to having excellent mechanical properties and biocompatibility that match the requirements for the purpose. Zirconia undergoes phase transformation during heating: monoclinic (room temperature to 1170 °C), tetragonal (1170 °C to 2370 °C), and cubic (>2370 °C). Most useful mechanical properties can be obtained when zirconia is in a multiphase form or in partially stabilized zirconia (PSZ), which is achieved by adding small amounts of a metal oxide dopant, such as MgO (magnesia). This study aimed to synthesize nano Mg-PSZ from a local resource found in West Kalimantan, Indonesia, and examine its structural stability, biochemical stability, and mechanical properties. Nano Mg-PSZ was prepared from a zircon local to Indonesia, from West Kalimantan Province, MgSO4∙7H2O, and polyethylene glycol (PEG)-6000 was used as a template. The obtained t-ZrO2 after calcination at 800 °C was shown to be stable at room temperature. The highest percentage of the t-ZrO2 phase was obtained at Zr0.95Mg0.05O2 with a variation of 99.5%. The hardness of Mg-PSZ increased from 554 MPa for ZrO2 without MgO doping to 5266 MPa for ZrO2 with a doping of 10% MgO. An in vitro biodegradation test showed that the greater the concentration of MgO in doping the ZrO2, the greater the degradation resistance of Mg-PSZ in simulated body fluid (SBF) solution. Full article
(This article belongs to the Special Issue Advanced Functional Materials: Challenges and Opportunities)
Show Figures

Figure 1

22 pages, 6112 KiB  
Article
Manufacturing and Characterization of Dental Crowns Made of 5-mol% Yttria Stabilized Zirconia by Digital Light Processing
by Jae-Min Jung, Gyu-Nam Kim, Young-Hag Koh and Hyoun-Ee Kim
Materials 2023, 16(4), 1447; https://doi.org/10.3390/ma16041447 - 9 Feb 2023
Cited by 18 | Viewed by 4517
Abstract
We herein report manufacturing of dental crowns made of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) with desired mechanical properties, optical translucency and dimensional accuracy using digital light processing (DLP). To this end, all processing parameters were carefully controlled and optimized. First, 5Y-PSZ particles [...] Read more.
We herein report manufacturing of dental crowns made of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) with desired mechanical properties, optical translucency and dimensional accuracy using digital light processing (DLP). To this end, all processing parameters were carefully controlled and optimized. First, 5Y-PSZ particles with a bimodal distribution were prepared via calcination of as-received granules and subsequent ball-milling and then used to formulate 5Y-PSZ suspensions with a high solid loading of 50 vol% required for high densification after sintering. Dispersant content was also optimized. To provide high dimensional accuracy, initial dimensions of dental crowns for 3D printing were precisely determined by considering increase and decrease in dimensions during photopolymerization and sintering, respectively. Photopolymerization time was also optimized for a given layer thickness of 50 μm to ensure good bonding between layers. A multi-step debinding schedule with a slow heating rate was employed to avoid formation of any defects. After sintering at 1500 °C for 2 h, 5Y-PSZ could be almost fully densified without noticeable defects within layers and at interfaces between layers. They had high relative densities (99.03 ± 0.39%) with a high cubic phase content (59.1%). These characteristics allowed for achievement of reasonably high mechanical properties (flexural strength = 625.4 ± 75.5 MPa and Weibull modulus = 7.9) and % transmittance (31.4 ± 0.7%). In addition, 5Y-PSZ dental crowns showed excellent dimensional accuracy (root mean square (RMS) for marginal discrepancy = 44.4 ± 10.8 μm and RMS for internal gap = 22.8 ± 1.6 μm) evaluated by the 3D scanning technique. Full article
(This article belongs to the Special Issue 3D Printing for Dental Applications)
Show Figures

Figure 1

20 pages, 13814 KiB  
Article
Digital Light Processing of Zirconia Suspensions Containing Photocurable Monomer/Camphor Vehicle for Dental Applications
by Seo-Young Yang, Young-Hag Koh and Hyoun-Ee Kim
Materials 2023, 16(1), 402; https://doi.org/10.3390/ma16010402 - 1 Jan 2023
Cited by 11 | Viewed by 2685
Abstract
This study reports the utility of solid camphor as a novel diluent in photocurable hexanediol diacrylate (HDDA) monomer to manufacture 4 mol% yttria partially stabilized zirconia (4Y-PSZ) components for dental applications by digital light processing (DLP). The use of a 65 wt% HDDA–35 [...] Read more.
This study reports the utility of solid camphor as a novel diluent in photocurable hexanediol diacrylate (HDDA) monomer to manufacture 4 mol% yttria partially stabilized zirconia (4Y-PSZ) components for dental applications by digital light processing (DLP). The use of a 65 wt% HDDA–35 wt% camphor solution allowed 4Y-PSZ suspensions to have reasonably low viscosities (1399 ± 55.8 mPa·s at a shear rate of 75 s−1), measured by a cone/plate viscometer, at a high solid loading of 48 vol%, where 4Y-PSZ particles prepared by calcination of as-received 4Y-PSZ granules, followed by a ball-milling process, were used with assistance of a dispersant. These 4Y-PSZ suspensions could be successfully applied to our custom-made DLP machine for manufacturing 4Y-PSZ components. To this end, several processing parameters, including layer thickness of 4Y-PSZ suspension, UV illumination time for layer-by-layer photocuring process, and initial dimensions of 4Y-PSZ objects, were tightly controlled. As sintering temperature increased from 1300 °C to 1500 °C, relative density and grain size of 4Y-PSZ objects increased, and cubic phase content also increased. Thus, after sintering at the highest temperature of 1500 °C for 3 h, high mechanical properties (biaxial flexural strength = 911 ± 40.7 MPa, hardness = 1371 ± 14.4 Hv) and reasonably high optical transmittance (translucency parameter = 7.77 ± 0.32, contrast ratio = 0.809 ± 0.007), evaluated by a spectrophotometer, were obtained due to a high relative density (97.2 ± 1.38%), which would be useful for dental applications. Full article
(This article belongs to the Special Issue Zirconia Implants: Current Status and Future Prospects)
Show Figures

Graphical abstract

12 pages, 5662 KiB  
Article
Preparation of Magnesia Partially Stabilized Zirconia Nanomaterials from Zirconium Hydroxide and Magnesium Carbonate Precursors Using PEG as a Template
by Rizky Berliana Wijayanti, Irna Rosmayanti, Kristanto Wahyudi, Eneng Maryani, Hernawan Hernawan and Rifki Septawendar
Crystals 2021, 11(6), 635; https://doi.org/10.3390/cryst11060635 - 1 Jun 2021
Cited by 8 | Viewed by 3936
Abstract
Stabilized zirconia is a promising material due to its great physical and chemical properties, and thermal stability. In this work, MgO was used as a stabilizer in ZrO2 to obtain Magnesia Partially Stabilized Zirconia (MSZ) nanomaterials assisted with PEG as a template [...] Read more.
Stabilized zirconia is a promising material due to its great physical and chemical properties, and thermal stability. In this work, MgO was used as a stabilizer in ZrO2 to obtain Magnesia Partially Stabilized Zirconia (MSZ) nanomaterials assisted with PEG as a template through conventional mixing process. Zirconium hydroxides prepared from local zircon and MgCO3 were used as MSZ precursors. Meanwhile, the stabilizer concentration was varied from 1 to 4 wt% of ZrO2. The effect of the stabilizer concentration and the calcination temperature to the crystallinity and the morphological properties of the MSZ nanoparticles were studied using X-ray diffraction and scanning and transmission electron microscopy. The ZrO2 content in the zirconium hydroxides precursors is accounting 89.52 wt% of the total and exhibits the dominant m-phase at 1000 °C. Meanwhile, the tetragonal and the monoclinic phases were formed in all MSZ samples at a temperature of 800–1000 °C. The as-synthesized MSZ samples show typical FT-IR spectra, consisting of the metal–oxygen bonds at below 500 cm−1 and the organic functional groups ranging at 1000–3000 cm−1. The ZrO2 morphologies exhibit spherical-like shapes with elongated agglomeration at 800 °C. In addition, the average particle sizes of the final product ranges from 20 to 50 nm. At a sintering temperature of 1500 °C, MSZ samples show the monoclinic phase of ZrO2 and densities in the range of 3.95–4.14 g/cm3. Full article
Show Figures

Figure 1

21 pages, 5550 KiB  
Article
Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia
by Anis Fakeeha, Ahmed A. Ibrahim, Hesham Aljuraywi, Yazeed Alqahtani, Ahmad Alkhodair, Suliman Alswaidan, Ahmed E. Abasaeed, Samsudeen O. Kasim, Sofiu Mahmud and Ahmed S. Al-Fatesh
Processes 2020, 8(5), 499; https://doi.org/10.3390/pr8050499 - 25 Apr 2020
Cited by 39 | Viewed by 6063
Abstract
The catalytic activity of the partial oxidation reforming reaction for hydrogen production over 10% Ni supported on high and low surface area alumina and zirconia was investigated. The reforming reactions, under atmospheric pressure, were performed with a feed molar ratio of CH4 [...] Read more.
The catalytic activity of the partial oxidation reforming reaction for hydrogen production over 10% Ni supported on high and low surface area alumina and zirconia was investigated. The reforming reactions, under atmospheric pressure, were performed with a feed molar ratio of CH4/O2 = 2.0. The reaction temperature was set to 450–650 °C. The catalytic activity, stability, and carbon formation were determined via TGA, TPO, Raman, and H2 yield. The catalysts were calcined at 600 and 800 °C. The catalysts were prepared via the wet-impregnation method. Various characterizations were conducted using BET, XRD, TPR, TGA, TPD, TPO, and Raman. The highest methane conversion (90%) and hydrogen yield (72%) were obtained at a 650 °C reaction temperature using Ni-Al-H-600, which also showed the highest stability for the ranges of the reaction temperatures investigated. Indeed, the time-on-stream for 7 h of the Ni-Al-H-600 catalyst displayed high activity and a stable profile when the reaction temperature was set to 650 °C. Full article
Show Figures

Graphical abstract

Back to TopTop