Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = bus oeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1304 KiB  
Article
Robust Reinforcement Learning Strategies with Evolving Curriculum for Efficient Bus Operations in Smart Cities
by Yuhan Tang, Ao Qu, Xuan Jiang, Baichuan Mo, Shangqing Cao, Joseph Rodriguez, Haris N Koutsopoulos, Cathy Wu and Jinhua Zhao
Smart Cities 2024, 7(6), 3658-3677; https://doi.org/10.3390/smartcities7060141 - 29 Nov 2024
Cited by 1 | Viewed by 1677
Abstract
Public transit systems are critical to the quality of urban life, and enhancing their efficiency is essential for building cost-effective and sustainable smart cities. Historically, researchers sought reinforcement learning (RL) applications to mitigate bus bunching issues with holding strategies. Nonetheless, these attempts often [...] Read more.
Public transit systems are critical to the quality of urban life, and enhancing their efficiency is essential for building cost-effective and sustainable smart cities. Historically, researchers sought reinforcement learning (RL) applications to mitigate bus bunching issues with holding strategies. Nonetheless, these attempts often led to oversimplifications and misalignment with the goal of reducing the total time passengers spent in the system, resulting in less robust or non-optimal solutions. In this study, we introduce a novel setting where each bus, supervised by an RL agent, can appropriately form aggregated policies from three strategies (holding, skipping station, and turning around to serve the opposite direction). It’s difficult to learn them all together, due to learning complexity, we employ domain knowledge and develop a gradually expanding action space curriculum, enabling agents to learn these strategies incrementally. We incorporate Long Short-Term Memory (LSTM) in our model considering the temporal interrelation among these actions. To address the inherent uncertainties of real-world traffic systems, we impose Domain Randomization (DR) on variables such as passenger demand and bus schedules. We conduct extensive numerical experiments with the integration of synthetic and real-world data to evaluate our model. Our methodology proves effective, enhancing bus schedule reliability and reducing total passenger waiting time by over 15%, thereby improving bus operation efficiency and smoothering operations of buses that align with sustainable goals. This work highlights the potential of robust RL combined with curriculum learning for optimizing public transport in smart cities, offering a scalable solution for real-world multi-agent systems. Full article
(This article belongs to the Special Issue Cost-Effective Transportation Planning for Smart Cities)
Show Figures

Figure 1

Back to TopTop