Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = bucket brigades

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 926 KiB  
Article
Qutrit Control for Bucket Brigade RAM Using Transmon Systems
by Lazaros Spyridopoulos, Dimitris Ntalaperas and Nikos Konofaos
Appl. Sci. 2025, 15(7), 3950; https://doi.org/10.3390/app15073950 - 3 Apr 2025
Viewed by 465
Abstract
Qudits allow the encoding and manipulation of additional quantum information compared to that stored to a two-level qubit system. Although manipulations of qudit states are generally more complex and can introduce extra sources of noise, qudits can still be used in a number [...] Read more.
Qudits allow the encoding and manipulation of additional quantum information compared to that stored to a two-level qubit system. Although manipulations of qudit states are generally more complex and can introduce extra sources of noise, qudits can still be used in a number of applications when this error can be kept sufficiently low. One such application is the case of the Bucket Brigade Algorithm for realizing a Quantum RAM (QRAM), which inherently uses qutrits for encoding the state of address switches. In this paper, we study a methodology for qutrit manipulation that leverages efficient encoding techniques and pulse calibration methods for the case of transmon systems. The methodology employs an encoding scheme that allows the execution of controlled operations, using the subspace spanned by the two lowest levels of the transmon; we show how this scheme can be used for generating one- and two-qutrit gates by leveraging the Qiskit and Boulder Opal frameworks to compute the parameters of pulses that implement the quantum gates that are used by the BBA. For this type of gate, simulations show that the pulses perform the required operations with a low infidelity when errors introduced by the qutrit Hamiltonian dynamics are considered. Full article
Show Figures

Figure 1

21 pages, 1057 KiB  
Article
Quantum Random Access Memory for Dummies
by Koustubh Phalak, Avimita Chatterjee and Swaroop Ghosh
Sensors 2023, 23(17), 7462; https://doi.org/10.3390/s23177462 - 28 Aug 2023
Cited by 19 | Viewed by 5144
Abstract
Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing. QRAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a [...] Read more.
Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing. QRAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies in terms of their structure and workings, circuit width and depth, unique qualities, practical implementation, and drawbacks. In general, with the exception of trainable machine learning-based QRAMs, we observe that QRAM has exponential depth/width requirements in terms of the number of qubits/qudits and that most QRAM implementations are practical for superconducting and trapped-ion qubit systems. Full article
(This article belongs to the Special Issue Quantum Sensors and Quantum Sensing)
Show Figures

Figure 1

19 pages, 5869 KiB  
Review
State-of-the-Art Molecular Dynamics Simulation Studies of RNA-Dependent RNA Polymerase of SARS-CoV-2
by Shoichi Tanimoto, Satoru G. Itoh and Hisashi Okumura
Int. J. Mol. Sci. 2022, 23(18), 10358; https://doi.org/10.3390/ijms231810358 - 8 Sep 2022
Cited by 8 | Viewed by 3794
Abstract
Molecular dynamics (MD) simulations are powerful theoretical methods that can reveal biomolecular properties, such as structure, fluctuations, and ligand binding, at the level of atomic detail. In this review article, recent MD simulation studies on these biomolecular properties of the RNA-dependent RNA polymerase [...] Read more.
Molecular dynamics (MD) simulations are powerful theoretical methods that can reveal biomolecular properties, such as structure, fluctuations, and ligand binding, at the level of atomic detail. In this review article, recent MD simulation studies on these biomolecular properties of the RNA-dependent RNA polymerase (RdRp), which is a multidomain protein, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are presented. Although the tertiary structures of RdRps in SARS-CoV-2 and SARS-CoV are almost identical, the RNA synthesis activity of RdRp of SARS-CoV is higher than SARS-CoV-2. Recent MD simulations observed a difference in the dynamic properties of the two RdRps, which may cause activity differences. RdRp is also a drug target for Coronavirus disease 2019 (COVID-19). Nucleotide analogs, such as remdesivir and favipiravir, are considered to be taken up by RdRp and inhibit RNA replication. Recent MD simulations revealed the recognition mechanism of RdRp for these drug molecules and adenosine triphosphate (ATP). The ligand-recognition ability of RdRp decreases in the order of remdesivir, favipiravir, and ATP. As a typical recognition process, it was found that several lysine residues of RdRp transfer these ligand molecules to the binding site such as a “bucket brigade.” This finding will contribute to understanding the mechanism of the efficient ligand recognition by RdRp. In addition, various simulation studies on the complexes of SARS-CoV-2 RdRp with several nucleotide analogs are reviewed, and the molecular mechanisms by which these compounds inhibit the function of RdRp are discussed. The simulation studies presented in this review will provide useful insights into how nucleotide analogs are recognized by RdRp and inhibit the RNA replication. Full article
Show Figures

Figure 1

15 pages, 2041 KiB  
Article
A New Self-Balancing Assembly Line Based on Collaborative Ant Behavior
by Pyung-Hoi Koo
Appl. Sci. 2020, 10(19), 6845; https://doi.org/10.3390/app10196845 - 29 Sep 2020
Cited by 4 | Viewed by 2985
Abstract
In most mass-production assembly lines, workers perform a set of tasks repetitively predefined by assembly line balancing techniques. The static task assignment often leads to low productivity when the assembly system faces disruptions or uncertainties such as machine breakdown and uneven worker capabilities. [...] Read more.
In most mass-production assembly lines, workers perform a set of tasks repetitively predefined by assembly line balancing techniques. The static task assignment often leads to low productivity when the assembly system faces disruptions or uncertainties such as machine breakdown and uneven worker capabilities. The idea of bucket brigades (BB) has been introduced to address the static assignment problems where cooperative behavior of ants is applied to flow line control. This paper examines possible efficiency losses associated with the existing BB-based assembly cell and presents an improved version for assembly cells under uncertain environments. The new system attempts to enhance productivity by assigning assembly tasks to workers dynamically and possibly adding buffers for decoupling consecutive workers. The proposed assembly system is evaluated through simulation experiments under various manufacturing environments. The experimental results show that the new system provides higher productivity than the naïve BB-based assembly cell as well as traditional assembly cells, especially for uncertain assembly environments. Full article
(This article belongs to the Special Issue Design and Optimization of Production Lines)
Show Figures

Figure 1

Back to TopTop