Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = brush-like polyaniline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4780 KB  
Article
Brush-like Polyaniline with Optical and Electroactive Properties at Neutral pH and High Temperature
by Alain Salvador Conejo-Dávila, Carlos Rafael Casas-Soto, Eider Pedro Aparicio-Martínez, David Chávez-Flores, Víctor Hugo Ramos-Sánchez, Rocio Berenice Dominguez, Velia Carolina Osuna, Anayansi Estrada-Monje, Alejandro Vega-Rios and Erasto Armando Zaragoza-Contreras
Int. J. Mol. Sci. 2022, 23(15), 8085; https://doi.org/10.3390/ijms23158085 - 22 Jul 2022
Cited by 2 | Viewed by 2737
Abstract
In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)-g-polyaniline)-b-poly(N-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated [...] Read more.
In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)-g-polyaniline)-b-poly(N-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC. Notably, the BL PAni presents absorption throughout the visible region and up to the near-infrared, showing dedoping resistance at up to 80 °C and at a neutral pH. The absorption range of the BL PAni, block copolymer, and homopolymer were studied by UV–Vis spectroscopy in solid-state and dispersion/solution, highlighting BL PAni and poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonate)-b-poly(N-vinylcarbazole) (PAAMP-b-PVK) due to the π-stacking between the anilinium and carbazole groups. The cyclic voltammetry confirmed the persistence of electroactivity at a pH near 7. Full article
Show Figures

Graphical abstract

18 pages, 4854 KB  
Article
Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications
by Ioan Valentin Tudose, Kyriakos Mouratis, Octavian Narcis Ionescu, Cosmin Romanitan, Cristina Pachiu, Marian Popescu, Volodymyr Khomenko, Oksana Butenko, Oksana Chernysh, George Kenanakis, Viacheslav Z. Barsukov, Mirela Petruta Suchea and Emmanouel Koudoumas
Nanomaterials 2022, 12(3), 487; https://doi.org/10.3390/nano12030487 - 29 Jan 2022
Cited by 20 | Viewed by 5723
Abstract
The development of materials offering electromagnetic interference (EMI) shielding is of significant consideration, since this can help in expanding the lifetime of devices, electromagnetic compatibility, as well as the protection of biological systems. Conductive paints used widely today in electromagnetic interference (EMI) shielding [...] Read more.
The development of materials offering electromagnetic interference (EMI) shielding is of significant consideration, since this can help in expanding the lifetime of devices, electromagnetic compatibility, as well as the protection of biological systems. Conductive paints used widely today in electromagnetic interference (EMI) shielding applications are often based on organic solvents that can create safety issues due to the subsequent environment problems. This paper concerned the development of eco-friendly conductive water-based paints for use in EMI-shielding applications. Graphene nanoplatelets, polyaniline emeraldine (PANI) doped with poly(styrene sulfonic acid) (PSS) or HCl or HBr and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) (PEDOT:PSS) in various ratios were employed in a water base for developing the paints. The target was to develop homogeneous water-based paint-like fluid mixtures easily applied onto surfaces using a paint brush, leading in homogeneous, uniform, opaque layers, draying fast in air at room temperature, and having quite good electrical conductivity that can offer efficient EMI-shielding performance. The results of this parametric trial indicated the optimum compositions leading in paints with optimized properties that can result in uniform, homogeneous, and conductive layers up to a thickness of over 500 μm without deformation and cracking, offering attenuation of up to 60 dBs of incoming GHz electromagnetic radiation. In addition, the structural and morphological characteristics of these paints were studied in detail. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electromagnetic Shielding Applications)
Show Figures

Figure 1

19 pages, 4406 KB  
Article
Nanoforest: Polyaniline Nanotubes Modified with Carbon Nano-Onions as a Nanocomposite Material for Easy-to-Miniaturize High-Performance Solid-State Supercapacitors
by Piotr Olejnik, Marianna Gniadek, Luis Echegoyen and Marta E. Plonska-Brzezinska
Polymers 2018, 10(12), 1408; https://doi.org/10.3390/polym10121408 - 19 Dec 2018
Cited by 27 | Viewed by 5703
Abstract
This article describes a facile low-cost synthesis of polyaniline nanotube (PANINT)–carbon nano-onion (CNO) composites for solid-state supercapacitors. Scanning electron microscopic (SEM) analyses indicate a uniform and ordered composition for the conducting polymer nanotubes immobilized on a thin gold film. The obtained [...] Read more.
This article describes a facile low-cost synthesis of polyaniline nanotube (PANINT)–carbon nano-onion (CNO) composites for solid-state supercapacitors. Scanning electron microscopic (SEM) analyses indicate a uniform and ordered composition for the conducting polymer nanotubes immobilized on a thin gold film. The obtained nanocomposites exhibit a brush-like architecture with a specific capacitance of 946 F g−1 at a scan rate of 1 mV s−1. In addition, the nanocomposites offer high conductivity and a porous and well-developed surface area. The PANINT–CNO nanocomposites were tested as electrodes with high potential and long-term stability for use in easy-to-miniaturize high-performance supercapacitor devices. Full article
(This article belongs to the Special Issue Nanostructured Polymers and Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop