Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = breakwater dam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6716 KB  
Article
Decadal and Heterogeneous Deformation of Breakwater Dams and Reclaimed Lands in Xuwei Port Revealed by Radar Interferometry Measurements
by Lei Xie, Jinheng Liu, Xiang Wang, Songbo Wu, Eslam Ali and Wenbin Xu
Remote Sens. 2025, 17(16), 2778; https://doi.org/10.3390/rs17162778 - 11 Aug 2025
Viewed by 261
Abstract
Breakwater dams are critical infrastructures that protect the safety of ports. However, these coastal structures are facing the compounding threats of sea level rise, storm surge, and dam subsidence. Heterogeneous deformations in these infrastructures arise from differential construction sequencing, sediment consolidation, and filling [...] Read more.
Breakwater dams are critical infrastructures that protect the safety of ports. However, these coastal structures are facing the compounding threats of sea level rise, storm surge, and dam subsidence. Heterogeneous deformations in these infrastructures arise from differential construction sequencing, sediment consolidation, and filling materials, yet traditional in situ monitoring remains spatially limited or even unavailable to trace back and continuously monitor deformation evolutions. In contrast, Interferometric Synthetic Aperture Radar (InSAR) offers valuable insights in providing the spatially and temporally covered dam deformation. In this study, we used two Sentinel-1 tracks from 2016 to 2025, and the persistent and distributed scatterers InSAR methods to map the long-term deformation of Xuwei Port, Lianyungang, China. We utilized six sites of leveling measurements to validate the InSAR-derived vertical deformation and indicate Root Mean Square Errors (RMSEs) ranging from −0.9–1.2 cm. We find, for the rock-sand filled section, the deformations show consolidating subsidence ranging from −63.8 cm to −40.6 cm. In contrast, the concrete tubular structure remains stable, with cumulative deformation ranging from −10.6 cm to −5.2 cm. The enclosing reclaimed land undergoes a period of accelerated settlement with subsidence rates of −64.9–−39.3 cm/yr, which are higher than original subsidence rates of −10.1–−9.7 cm/yr. Additionally, we integrated the consolidation model and tide gauge to quantify that the freeboard will decrease to 0.08–0.31 m in the following 100 years with the continuous sea level rise and dam subsidence. This study benefits our understandings of coastal dam and reclaimed land. It highlights InSAR as a valuable tool to evaluate the critical risk between sea level rise and coastal infrastructure subsidence. Full article
(This article belongs to the Special Issue Advances in Surface Deformation Monitoring Using SAR Interferometry)
Show Figures

Figure 1

29 pages, 8660 KB  
Article
Two-Dimensional Free-Surface Flow Modeling for Wave-Structure Interactions and Induced Motions of Floating Bodies
by Der-Chang Lo, Keh-Han Wang and Tai-Wen Hsu
Water 2020, 12(2), 543; https://doi.org/10.3390/w12020543 - 15 Feb 2020
Cited by 3 | Viewed by 5164
Abstract
In this study, the level set (LS) and immersed boundary (IB) methods were integrated into a Navier–Stokes equation two-phase flow solver, to investigate wave-structure interactions and induced motions of floating bodies in two dimensions. The movement of an interfacial boundary of two fluids, [...] Read more.
In this study, the level set (LS) and immersed boundary (IB) methods were integrated into a Navier–Stokes equation two-phase flow solver, to investigate wave-structure interactions and induced motions of floating bodies in two dimensions. The movement of an interfacial boundary of two fluids, even with severe free-surface deformation, is tracked by using the level set method, while an immersed object inside a fluid domain is treated by the IB method. Both approaches can be implemented by solving the Navier–Stokes equations for viscous laminar flows with embedded objects in fluids. For accurate treatment of the solid–liquid phase, appropriate source terms as forcing functions to take into account the hydrodynamic effects on the body boundaries are added into the governing equations. The integrated compact interfacial tracking techniques between the interfaces of gas–liquid phase and the solid–liquid phase allow the use of a combined Eulerian Cartesian and Lagrangian grid system. Problems related to the fluid-structure interactions and induced motions of a floating body, such as (a) a dam-break wave over a dry bed; (b) a dam-break wave over either a submerged semicircular or rectangular cylinder; (c) wave decomposition process over a trapezoid breakwater; (d) a free-falling wedge into a water body; and (e) wave packet interacting with a floating body are selected to test the model performance. For all cases, the computed results are found to agree reasonably well with published experimental data and numerical solutions. For the case of modeling wave decomposition process, improved solutions are obtained. The detailed features of flow phenomena described by the physical variables of velocity, pressure and vorticity are presented and discussed. The present two-phase flow model is proved to have the advantage of simulating the cases with induced severe interfacial oscillations and coupled gas (or air) motions where the single-phase model may miss the contributions of the air motions on the interfaces. Additionally, the proposed method with uses of the LS and IB methods is demonstrated to be able to achieve the reliable predictions of complex flow fields. Full article
(This article belongs to the Special Issue Interaction between Waves and Maritime Structures)
Show Figures

Figure 1

Back to TopTop