Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = borosilicate glass molding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10676 KiB  
Article
Development of a Polyethylene Glycol/Polymethyl Methacrylate-Based Binder System for a Borosilicate Glass Filler Suitable for Injection Molding
by Martin Zürn, Annika Schrage, Steffen Antusch, Nicole Bohn, Peter Holzer and Thomas Hanemann
Materials 2024, 17(6), 1396; https://doi.org/10.3390/ma17061396 - 19 Mar 2024
Cited by 4 | Viewed by 2765
Abstract
Powder injection molding is an established, cost effective and often near-net-shape mass production process for metal or ceramic parts with complex geometries. This paper deals with the extension of the powder injection molding process chain towards the usage of a commercially available borosilicate [...] Read more.
Powder injection molding is an established, cost effective and often near-net-shape mass production process for metal or ceramic parts with complex geometries. This paper deals with the extension of the powder injection molding process chain towards the usage of a commercially available borosilicate glass and the realization of glass compounds with huge densities. The whole process chain consists of the individual steps of compounding, molding, debinding, and sintering. The first part, namely, the search for a suitable feedstock composition with a very high solid load and reliable molding properties, is mandatory for the successful manufacture of a dense glass part. The most prominent feature is the binder composition and the related comprehensive rheological characterization. In this work, a binder system consisting of polyethylene glycol and polymethylmethacrylate with stearic acid as a surfactant was selected and its suitability for glass injection molding was evaluated. The influence of all feedstock components on processing and of the process steps on the final sintered part was investigated for sintered glass parts with densities around 99% of the theoretical value. Full article
Show Figures

Figure 1

17 pages, 10273 KiB  
Article
A Novel Fused SiO2 and h-BN Modified Quartz Fiber/Benzoxazine Resin Ceramizable Composite with Excellent Flexural Strength and Ablation Resistance
by Zongyi Deng, Yunfei Lv, Minxian Shi, Zhixiong Huang and Wenchao Huang
Polymers 2023, 15(22), 4430; https://doi.org/10.3390/polym15224430 - 16 Nov 2023
Cited by 5 | Viewed by 1990
Abstract
Hypersonic vehicles encounter hostile service environments of thermal/mechanical/chemical coupling, so thermal protection materials are crucial and essential. Ceramizable composites have recently attracted intensive interest due to their ability to provide large-area thermal protection for hypersonic vehicles. In this work, a novel ceramizable composite [...] Read more.
Hypersonic vehicles encounter hostile service environments of thermal/mechanical/chemical coupling, so thermal protection materials are crucial and essential. Ceramizable composites have recently attracted intensive interest due to their ability to provide large-area thermal protection for hypersonic vehicles. In this work, a novel ceramizable composite of quartz fiber/benzoxazine resin modified with fused SiO2 and h-BN was fabricated using a prepreg compression molding technique. The effects of the fused SiO2 and h-BN contents on the thermal, mechanical, and ablative properties of the ceramizable composite were systematically investigated. The ceramizable composite with an optimized amount of fused SiO2 and h-BN exhibited superb thermal stability, with a peak degradation temperature and residue yield at 1400 °C of 533.2 °C and 71.5%, respectively. Moreover, the modified ceramizable composite exhibited excellent load-bearing capacity with a flexural strength of 402.2 MPa and superior ablation resistance with a linear ablation rate of 0.0147 mm/s at a heat flux of 4.2 MW/m2, which was significantly better than the pristine quartz fiber/benzoxazine resin composite. In addition, possible ablation mechanisms were revealed based on the microstructure analysis, phase transformation, chemical bonding states, and the degree of graphitization of the ceramized products. The readily oxidized pyrolytic carbon (PyC) and the SiO2 with a relatively low melting point were converted in situ into refractory carbide. Thus, a robust thermal protective barrier with SiC as the skeleton and borosilicate glass as the matrix protected the composite from severe thermochemical erosion and thermomechanical denudation. Full article
(This article belongs to the Special Issue Resin-Based Polymer Materials and Related Applications)
Show Figures

Figure 1

Back to TopTop