Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bock copolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3982 KiB  
Article
S/N/O-Enriched Carbons from Polyacrylonitrile-Based Block Copolymers for Selective Separation of Gas Streams
by Diego Gómez-Díaz, Lidia Domínguez-Ramos, Giulio Malucelli, María Sonia Freire, Julia González-Álvarez and Massimo Lazzari
Polymers 2024, 16(2), 269; https://doi.org/10.3390/polym16020269 - 18 Jan 2024
Viewed by 2261
Abstract
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation [...] Read more.
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation and sulfuration, respectively, were characterized by Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectrometry, and their surface textural properties were measured by a volumetric analyzer. We observed that the presence of sulfur tends to modify the structure of the carbons, from microporous to mesoporous, while the use of copolymers with a range of molar composition PAN/PMMA between 10/90 and 47/53 allows the obtainment of carbons with different degrees of porosity. The amount of sacrificial block only affects the morphology of carbons stabilized in oxygen, inducing their nanostructuration, but has no effect on their chemical composition. We also demonstrated their suitability for separating a typical N2/CO2 post-combustion stream. Full article
Show Figures

Figure 1

14 pages, 8190 KiB  
Review
Morphology-Controlled Nitrogen-Containing Polymers as Synthetic Precursors for Electrochemical Oxygen Reduction Fe/N/C Cathode Catalysts
by Yuta Nabae
Catalysts 2018, 8(8), 324; https://doi.org/10.3390/catal8080324 - 8 Aug 2018
Cited by 8 | Viewed by 5307
Abstract
Nitrogen-containing aromatic polymers such as polyimide are known for their high thermal stability. While they have been widely used in industry, their relevance to catalysis is still quite limited. In recent years, nitrogen-containing polymers have been explored as precursors of nitrogen-doped carbonaceous materials, [...] Read more.
Nitrogen-containing aromatic polymers such as polyimide are known for their high thermal stability. While they have been widely used in industry, their relevance to catalysis is still quite limited. In recent years, nitrogen-containing polymers have been explored as precursors of nitrogen-doped carbonaceous materials, which are particularly attractive as non-precious metal catalysts for oxygen reduction in fuel cells. The high thermal stability of nitrogen-containing polymers contributes to an effective control over the morphology of the resulting carbonaceous catalysts. This review article provides an overview of the recent progress on the research and development of Fe/N/C oxygen reduction catalysts prepared from morphology-controlled nitrogen-containing polymers. Full article
(This article belongs to the Special Issue Recent Advances of Electrocatalysis in Fuel Cells)
Show Figures

Graphical abstract

Back to TopTop