Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = blueberry bruise damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2856 KiB  
Article
Finite Element Analysis and Near-Infrared Hyperspectral Reflectance Imaging for the Determination of Blueberry Bruise Grading
by Zhaoqi Zheng, Zimin An, Xinyu Liu, Jinghui Chen and Yonghong Wang
Foods 2022, 11(13), 1899; https://doi.org/10.3390/foods11131899 - 27 Jun 2022
Cited by 11 | Viewed by 2719
Abstract
Bruising of the subcutaneous tissues of blueberries is an important form of mechanical damage. Different levels of bruising have a significant effect on the post-harvest marketing of blueberries. To distinguish different grades of blueberry bruises and explore the effects of different factors, explicit [...] Read more.
Bruising of the subcutaneous tissues of blueberries is an important form of mechanical damage. Different levels of bruising have a significant effect on the post-harvest marketing of blueberries. To distinguish different grades of blueberry bruises and explore the effects of different factors, explicit dynamic simulation and near-infrared hyperspectral reflectance imaging were employed without harming the blueberries in this study. Based on the results of the compression experiment, an explicit dynamic simulation of blueberries was performed to measure the potential locations of bruises and preliminarily divide the bruise stages. A near-infrared hyperspectral reflectance imaging system was used to detect the actual blueberry bruises. According to the blueberry photos taken by the near-infrared hyperspectral reflectance imaging system, the actual bruise rates of blueberries were obtained by using the Environment for Visualizing Images software for training and classification. Bruise grades of blueberries were divided accordingly. Response surface methodology was used to determine the effects of ripeness, loading speed and loading location on the blueberry bruising rate. Under the optimized parameters, the actual damage rate of blueberries was 1.1%. The results provide an important theoretical basis for the accurate and rapid identification and classification of blueberry bruise damage. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

13 pages, 1525 KiB  
Article
Harvest of Southern Highbush Blueberry with a Modified, Over-the-Row Mechanical Harvester: Use of Soft-Catch Surfaces to Minimize Impact Bruising
by Steven A. Sargent, Fumiomi Takeda, Jeffrey G. Williamson and Adrian D. Berry
Agronomy 2021, 11(7), 1412; https://doi.org/10.3390/agronomy11071412 - 14 Jul 2021
Cited by 15 | Viewed by 4036
Abstract
Harvest of fresh market, southern highbush blueberries (SHB) is labor intensive and costly, leading to a demand for alternative harvest methods. Recent research has shown potential for mechanically harvesting blueberries with minimal bruising by using a modified over-the-row (OTR) harvester. For two harvests, [...] Read more.
Harvest of fresh market, southern highbush blueberries (SHB) is labor intensive and costly, leading to a demand for alternative harvest methods. Recent research has shown potential for mechanically harvesting blueberries with minimal bruising by using a modified over-the-row (OTR) harvester. For two harvests, SHB cultivars Optimus and Vireo were either hand-harvested (HH) or mechanically harvested (MH) by two commercial harvesters, one unmodified with standard hard-catch surfaces (HCS) or by the other modified with soft-catch surfaces (SCS). For Harvest 1, fruit from all harvest methods were hand-sorted into the following categories: blue fruit (marketable), red fruit, green fruit and culls. Samples from each cultivar and treatment were then held at 24 °C overnight, and the following day firmness and impact bruise severity were determined. Harvest 2 had identical harvest treatments; however, the fruit were sorted on a commercial packing line prior to packing in clamshells (n = 16). A subsample was held overnight as in Harvest 1 for bruise severity rating, while the remaining fruit were stored at 1 °C for 14 days (d). Although percent marketable fruit was more affected by cultivar than harvest method, determination of bruise severity revealed the benefit of harvest with SCS over HCS for both cultivars. The former had 16–26% severe bruising, compared to 27–40% for the latter; HH had 1–4%. During storage, HH fruit remained firmer than HCS and SCS, which were similar. After 14 d, firmness for “Optimus” was 239 N (HH), 157 N (HCS and SCS) and for “Vireo” it was 189 (HH), 155 N (HCS and SCS). Fruit weight loss increased during storage (1.1–4.4%), but there was no difference due to catch plate surface. SSC, TTA and Ratio were not affected by catch surface type or storage period within cultivar. Using modifications such as “soft” catch surfaces on currently available OTR harvesters reduces impact bruise damage; however, impacts incurred during commercial packing operations can negate this effect. MH for fresh market blueberries may provide an economical alternative for blueberry growers; however, with current technology, the fruit should be utilized within a week of harvest. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

10 pages, 556 KiB  
Article
Modified Over-the-Row Machine Harvesters to Improve Northern Highbush Blueberry Fresh Fruit Quality
by Lisa Wasko DeVetter, Wei Qiang Yang, Fumiomi Takeda, Scott Korthuis and Changying Li
Agriculture 2019, 9(1), 13; https://doi.org/10.3390/agriculture9010013 - 8 Jan 2019
Cited by 26 | Viewed by 7443
Abstract
Improved blueberry mechanical harvesting (MH) equipment that maintains fresh market quality are needed due to rising costs and decreasing availability of laborers for harvesting by hand. In 2017, a modified over-the-row (OTR) blueberry harvester with experimental catch surfaces and plates designed to reduce [...] Read more.
Improved blueberry mechanical harvesting (MH) equipment that maintains fresh market quality are needed due to rising costs and decreasing availability of laborers for harvesting by hand. In 2017, a modified over-the-row (OTR) blueberry harvester with experimental catch surfaces and plates designed to reduce fruit bruising was evaluated. The catch surfaces were made of neoprene (soft catch surface; SCS) or canvas (hard catch surface; HCS) and compared to hand-picked fruit (control). Early- and early/mid-season ‘Duke’ and ‘Draper’, respectively, were evaluated in Oregon, while late-season ‘Elliott’ and ‘Aurora’ were evaluated in Washington. Harvested berries were run through commercial packing lines with fresh pack out recorded and bruise incidence or fresh fruit quality evaluated during various lengths of cold storage. The fresh pack out for ‘Duke’ and ‘Draper’ were 83.5% and 73.2%, respectively, and no difference was noted between SCS and HCS. ‘Duke’ fruit firmness was highest among MH berries with SCS, but firmness decreased in storage after one week. Firmness was highest among hand harvested ‘Draper’ followed by MH with SCS. For ‘Elliott’ and ‘Aurora’, fruit firmness was the same across harvesting methods. ‘Draper’ exhibited more bruising than ‘Duke’, but bruise ratings and the incidence of bruising at ≤10% and ≤20% were similar between hand and MH ‘Draper’ with SCS after 24 h of harvest. ‘Aurora’ berries had similar bruise ratings after 24 h between hand harvesting and MH with SCS, while ‘Elliott’ showed more bruise damage by MH with both SCS and HCS than hand harvested fruit. Although our studies showed slightly lower fresh market blueberry pack outs, loss of firmness, and increased bruise damage in fruit harvested by the experimental MH system compared to hand harvested fruit, higher quality was achieved using SCS compared to HCS. We demonstrated that improved fresh market quality in northern highbush blueberry is achievable by using modified OTR harvesters with SCS and fruit removal by either hand-held pneumatic shakers or rotary drum shakers. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Practices for Berry Crops)
Show Figures

Figure 1

18 pages, 2427 KiB  
Article
Applying New Technologies to Transform Blueberry Harvesting
by Fumiomi Takeda, Wei Q. Yang, Changying Li, Andris Freivalds, Kiseok Sung, Rui Xu, Bo Hu, Jeffrey Williamson and Steven Sargent
Agronomy 2017, 7(2), 33; https://doi.org/10.3390/agronomy7020033 - 4 May 2017
Cited by 42 | Viewed by 13182
Abstract
The growth of the blueberry industry in the past three decades has been remarkably robust. However, a labor shortage for hand harvesting, increasingly higher labor costs, and low harvest efficiencies are becoming bottlenecks for sustainable development of the fresh market blueberry production. In [...] Read more.
The growth of the blueberry industry in the past three decades has been remarkably robust. However, a labor shortage for hand harvesting, increasingly higher labor costs, and low harvest efficiencies are becoming bottlenecks for sustainable development of the fresh market blueberry production. In this study, we evaluated semi-mechanical harvesting systems consisting of a harvest-aid platform with soft fruit catching surfaces that collected the fruit detached by portable, hand-held, pneumatic shakers. The softer fruit catching surfaces were not glued to the hard sub-surfaces of the harvest-aid platform, but suspended over them. Also, the ergonomic aspect of operating powered harvesting equipment was determined. The pneumatic shakers removed 3.5 to 15 times more fruit (g/min) than by hand. Soft fruit catching surfaces reduced impact force and bruise damage. Fruit firmness was higher in fruit harvested by hand compared to that by pneumatic shakers in some cultivars. The bruise area was less than 8% in fruit harvested by hand and with semi-mechanical harvesting system. The percentage of blue, packable fruit harvested by pneumatic shakers comprised as much as 90% of the total, but less than that of hand-harvested fruit. The ergonomic analysis by electromyography showed that muscle strain in the back, shoulders, and forearms was low in workers operating the light-weight, pneumatic shakers that were tethered to the platform with a tool balancer. The new harvesting method can reduce the labor requirement to about 100 hour/hectare/year and help to mitigate the rising labor cost and shortage of workers for harvesting fresh-market quality blueberries. Full article
Show Figures

Figure 1

Back to TopTop