Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = blood transmission of PAMPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2004 KiB  
Review
A Review on Novel Channel Materials for Particle Image Velocimetry Measurements—Usability of Hydrogels in Cardiovascular Applications
by Christina Maria Winkler, Antonia Isabel Kuhn, Gesine Hentschel and Birgit Glasmacher
Gels 2022, 8(8), 502; https://doi.org/10.3390/gels8080502 - 12 Aug 2022
Cited by 7 | Viewed by 4103
Abstract
Particle image velocimetry (PIV) is an optical and contactless measurement method for analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization investigated in the current research was matching the channel material’s index of refraction (IOR) to that of the fluid. [...] Read more.
Particle image velocimetry (PIV) is an optical and contactless measurement method for analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization investigated in the current research was matching the channel material’s index of refraction (IOR) to that of the fluid. Silicone is typically used as a channel material for these applications, so optical matching cannot be proven. This review considers hydrogel as a new PIV channel material for IOR matching. The advantages of hydrogels are their optical and mechanical properties. Hydrogels swell more than 90 vol% when hydrated in an aqueous solution and have an elastic behavior. This paper aimed to review single, double, and triple networks and nanocomposite hydrogels with suitable optical and mechanical properties to be used as PIV channel material, with a focus on cardiovascular applications. The properties are summarized in seven hydrogel groups: PAMPS, PAA, PVA, PAAm, PEG and PEO, PSA, and PNIPA. The reliability of the optical properties is related to low IORs, which allow higher light transmission. On the other hand, elastic modulus, tensile/compressive stress, and nominal tensile/compressive strain are higher for multiple-cross-linked and nanocomposite hydrogels than single mono-cross-linked gels. This review describes methods for measuring optical and mechanical properties, e.g., refractometry and mechanical testing. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Gels)
Show Figures

Graphical abstract

17 pages, 801 KiB  
Review
Connection between Periodontitis-Induced Low-Grade Endotoxemia and Systemic Diseases: Neutrophils as Protagonists and Targets
by Ljubomir Vitkov, Luis E. Muñoz, Jasmin Knopf, Christine Schauer, Hannah Oberthaler, Bernd Minnich, Matthias Hannig and Martin Herrmann
Int. J. Mol. Sci. 2021, 22(9), 4647; https://doi.org/10.3390/ijms22094647 - 28 Apr 2021
Cited by 37 | Viewed by 5468
Abstract
Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other [...] Read more.
Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription, and is referred to as ‘‘trained immunity’’. It acts via modulation of hematopoietic stem and progenitor cells (HSPCs). A main modulation driver is the sustained, persistent low-level transmission of lipopolysaccharide from the periodontal pocket into the peripheral blood. Subsequently, the neutrophil phenotype changes and neutrophils become hyper-responsive and prone to boosted formation of neutrophil extracellular traps (NET). Cytotoxic neutrophil proteases and histones are responsible for ulcer formations on the pocket epithelium, which foster bacteremia and endoxemia. The latter promote systemic low-grade inflammation (SLGI), a precondition for many systemic diseases and some of them, e.g., atherosclerosis, diabetes etc., can be triggered by SLGI alone. Either reverting the polarized neutrophils back to the homeostatic state or attenuation of neutrophil hyper-responsiveness in periodontitis might be an approach to diminish or even to prevent systemic diseases. Full article
(This article belongs to the Special Issue Molecular Links between Periodontitis and Systemic Diseases)
Show Figures

Figure 1

Back to TopTop