Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = blood decontamination solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 (registering DOI) - 31 Jul 2025
Viewed by 199
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

11 pages, 1847 KiB  
Article
Effects of Blood Contamination and Decontamination Protocol on Reverse Torque Value of Abutment Screws in Dental Implants: An In Vitro Study
by Hafiz A. Adawi, Harisha Dewan, Arwa Khawaji, Hadeel Akkam, Areej Hakami, Bashair Wasli, Maram Hakami, Maimonah Alali and Hitesh Chohan
Biomimetics 2023, 8(2), 157; https://doi.org/10.3390/biomimetics8020157 - 14 Apr 2023
Cited by 7 | Viewed by 2147
Abstract
Background and Objective: Loosening of abutment screws in dental implants is a mechanical complication that affects prosthetic treatments and hence, patient satisfaction. Blood contamination of abutment screws may play a role in this phenomenon. However, only limited research attention has been given [...] Read more.
Background and Objective: Loosening of abutment screws in dental implants is a mechanical complication that affects prosthetic treatments and hence, patient satisfaction. Blood contamination of abutment screws may play a role in this phenomenon. However, only limited research attention has been given to this issue. In the present study, we determined the effect of blood contamination and decontamination protocol on the reverse torque value (RTV) of abutment screws. Materials and Methods: A questionnaire-based survey was sent to 210 implantologists requesting feedback on their attitude to the blood contamination issue and the decontamination protocols used. The survey responses were used in a selection of the decontamination solutions that were used in the subsequent in vitro study on the effects of blood decontamination protocol on the RTV of abutment screws. Thus, three study groups were used (n = 20 abutment screws in each group): Group 1 (control group; blood-contaminated screws); Group 2 (screws decontaminated with 5.25% sodium hypochlorite (NaOCl) solution); and Group 3 (screws decontaminated with normal saline solution (0.9%)). Then, each of the connections were subjected to thermocycling, and RTVs of the screw were measured using a digital torque meter. Intragroup and intergroup RTVs were analyzed for significance using analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) tests. Results: 48% of the implantologists responded to the survey; 80% of them were concerned with blood contamination in the implant connection, especially before abutment loading and 85% of them used either chlorhexidine solution or normal saline solution as the decontamination agent. The mean RTV for Group 2 screws (30.27 ± 2.8 N.cm) was significantly greater than that for Group 3 screws (26.02 ± 1.99 N.cm) which, in turn, was significantly greater than that for Group 1 screws (23.64 ± 1.84 N.cm). Conclusion: Decontamination of blood-covered connections using 5.25% NaOCl solution or normal saline solution restores the RTV of abutment screws. This finding may have clinical relevance in that the decontaminated screws may contribute to the low incidence of screw loosening and, ultimately, improved patient satisfaction. Full article
(This article belongs to the Special Issue Biomimetic Approach to Dental Implants)
Show Figures

Figure 1

9 pages, 3104 KiB  
Article
Evaluation of Different Cleaning Strategies for Removal of Contaminating DNA Molecules
by Martina Nilsson, Hanne De Maeyer and Marie Allen
Genes 2022, 13(1), 162; https://doi.org/10.3390/genes13010162 - 17 Jan 2022
Cited by 26 | Viewed by 10211
Abstract
Decontamination strategies and their efficiencies are crucial when performing routine forensic analysis, and many factors influence the choice of agent to use. In this study, the effects of ten different cleaning strategies were evaluated to compare their ability to remove contaminating DNA molecules. [...] Read more.
Decontamination strategies and their efficiencies are crucial when performing routine forensic analysis, and many factors influence the choice of agent to use. In this study, the effects of ten different cleaning strategies were evaluated to compare their ability to remove contaminating DNA molecules. Cell-free DNA or blood was deposited on three surfaces (plastic, metal, and wood) and decontaminated with various treatments. The quantities of recovered DNA, obtained by swabbing the surfaces after cleaning using the different strategies, was analyzed by real-time PCR. Large differences in the DNA removal efficiencies were observed between different cleaning strategies, as well as between different surfaces. The most efficient cleaning strategies for cell-free DNA were the different sodium hypochlorite solutions and Trigene®, for which a maximum of 0.3% DNA was recovered on all three surfaces. For blood, a maximum of 0.8% of the deposited DNA was recovered after using Virkon® for decontamination. The recoveries after using these cleaning strategies correspond to DNA from only a few cells, out of 60 ng of cell-free DNA or thousands of deposited blood cells. Full article
(This article belongs to the Special Issue Advances in Forensic Genetics)
Show Figures

Figure 1

Back to TopTop