Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = blackthorn berries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1225 KB  
Article
Influence of Various Fruit Preservation Methods on the Phenolic Composition and Antioxidant Activity of Prunus spinosa L. Fruit Extract
by Valentina Sallustio, Joana Marto, Lidia Maria Gonçalves, Manuela Mandrone, Ilaria Chiocchio, Michele Protti, Laura Mercolini, Barbara Luppi, Federica Bigucci, Angela Abruzzo and Teresa Cerchiara
Plants 2025, 14(15), 2454; https://doi.org/10.3390/plants14152454 - 7 Aug 2025
Viewed by 1186
Abstract
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the [...] Read more.
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the best storage methods is essential. In this study, blackthorns were preserved using different methods (air-drying, freezing, or freeze-drying) to determine the optimal procedure for preserving their antioxidant activity. The fruits were extracted using a 50:50 (V/V) mixture of ethanol and water. The different extracts were phytochemically characterized for their phenolic content and antioxidant activity. The Folin–Ciocalteu test revealed total phenolic contents of 7.97 ± 0.04, 13.99 ± 0.04, and 7.39 ± 0.08 (mg GAE/g raw material) for the three types of extracts, respectively. The total flavonoid contents were 2.42 ± 0.16, 3.14 ± 0.15, and 2.32 ± 0.03 (mg QE/g raw material), respectively. In line with the polyphenol analysis, the antioxidant activity as determined by DPPH method was higher for the frozen extract, with a value of 91.78 ± 0.80%, which was confirmed by the ROS test on keratinocytes. These results show that both air-drying and freeze-drying processes negatively impact the preservation of antioxidant activity in blackthorns, suggesting that freezing may be the best preservation method before bioactive compound extraction. Full article
(This article belongs to the Special Issue Bioactives from Plants: From Extraction to Functional Food Innovation)
Show Figures

Figure 1

19 pages, 1523 KB  
Article
Effect of Grinding and Successive Sieving on the Distribution of Active Biological Compounds in the Obtained Fractions of Blackthorn Berries
by Alina-Daiana Ionescu, Mariana Ferdeș, Gheorghe Voicu, George Ipate, Gabriel-Alexandru Constantin, Elena-Mădălina Ștefan and Mihaela Begea
Appl. Sci. 2024, 14(16), 7133; https://doi.org/10.3390/app14167133 - 14 Aug 2024
Cited by 3 | Viewed by 2855
Abstract
The current study evaluated the effect of powder fractionation based on particle size on the chemical composition of macronutrients such as proteins and sugars, on the phytochemical properties (total content of polyphenolic compounds, vitamin C, and antioxidant activity), on preservation capacity (water activity), [...] Read more.
The current study evaluated the effect of powder fractionation based on particle size on the chemical composition of macronutrients such as proteins and sugars, on the phytochemical properties (total content of polyphenolic compounds, vitamin C, and antioxidant activity), on preservation capacity (water activity), powder functional properties (water absorption capacity and water solubility index), and physicochemical properties (particle size distribution and moisture content) of blackthorn berry (Prunus spinosa) powders. The fruits were separated from the plant material and seeds, dried, and then ground using an universal mill for dry materials. Eight fractions were obtained after sieving on sieves with different mesh sizes, such as 1 mm, 0.8 mm, 0.630 mm, 0.450 mm, 0.315 mm, 0.200 mm, and 0.125 mm. The grinding/sieving procedure was effective in separating Prunus spinosa powder into sufficiently different size classes. The maximal moisture content and water activity were 5.61% and 0.250, respectively, showed good preservation from a microbiological point of view, and ensured the prevention of oxidation of biologically active compounds of blackthorn berry powders. For samples with reduced particle sizes, the powder functional properties were greatly improved. The total phenolic content, carbohydrates, and antioxidant activity showed significantly different values for some particle size classes compared to the un-sieved sample. A considerable content of vitamin C was presented in the fraction with large particle sizes, precisely because they did not undergo intense degradation processes. Therefore, the technique of grinding and successive sieving proved effective in enhancing the physicochemical and functional characteristics of powdered blackthorn berries, particularly for smaller particles. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

Back to TopTop