Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bitted to bit-free behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 735 KB  
Review
Mouth Pain in Horses: Physiological Foundations, Behavioural Indices, Welfare Implications, and a Suggested Solution
by David J. Mellor
Animals 2020, 10(4), 572; https://doi.org/10.3390/ani10040572 - 29 Mar 2020
Cited by 44 | Viewed by 24088
Abstract
A proposition addressed here is that, although bitted horses are viewed by many equestrians as being largely free of bit-related mouth pain, it seems likely that most behavioural signs of such pain are simply not recognised. Background information is provided on the following: [...] Read more.
A proposition addressed here is that, although bitted horses are viewed by many equestrians as being largely free of bit-related mouth pain, it seems likely that most behavioural signs of such pain are simply not recognised. Background information is provided on the following: the major features of pain generation and experience; cerebrocortical involvement in the conscious experience of pain by mammals; the numerous other subjective experiences mammals can have; adjunct physiological responses to pain; some general feature of behavioural responses to pain; and the neural bases of sensations generated within the mouth. Mouth pain in horses is then discussed. The areas considered exclude dental disease, but they include the stimulation of pain receptors by bits in the interdental space, the tongue, the commissures of the mouth, and the buccal mucosa. Compression, laceration, inflammation, impeded tissue blood flow, and tissue stretching are evaluated as noxious stimuli. The high pain sensitivity of the interdental space is described, as are likely increases in pain sensitivity due to repeated bit contact with bruises, cuts, tears, and/or ulcers wherever they are located in the mouth. Behavioural indices of mouth pain are then identified by contrasting the behaviours of horses when wearing bitted bridles, when changed from bitted to bit-free bridles, and when free-roaming unbitted in the wild. Observed indicative behaviours involve mouth movements, head-neck position, and facial expression (“pain face”), as well as characteristic body movements and gait. The welfare impacts of bit-related pain include the noxiousness of the pain itself as well as likely anxiety when anticipating the pain and fear whilst experiencing it, especially if the pain is severe. In addition, particular mouth behaviours impede airflow within the air passages of the upper respiratory system, effects that, in their turn, adversely affect the air passages in the lungs. Here, they increase airflow resistance and decrease alveolar gas exchange, giving rise to suffocating experiences of breathlessness. In addition, breathlessness is a likely consequence of the low jowl angles commonly maintained during dressage. If severe, as with pain, the prospect of breathlessness is likely to give rise to anxiety and the direct experience of breathlessness to fear. The related components of welfare compromise therefore likely involve pain, breathlessness, anxiety, and fear. Finally, a 12-point strategy is proposed to give greater impetus to a wider adoption of bit-free bridles in order to avoid bit-induced mouth pain. Full article
(This article belongs to the Special Issue The Horse as an Athlete: Sports Medicine, Rehabilitation and Wellness)
Show Figures

Figure 1

17 pages, 401 KB  
Article
BICM-ID with Physical Layer Network Coding in TWR Free Space Optical Communication Links
by Alaa A. Saeed Al-Rubaie, Zina M. Hassan Abu Almaalie and Zabih Ghassemlooy
Computers 2017, 6(3), 24; https://doi.org/10.3390/computers6030024 - 21 Jul 2017
Cited by 1 | Viewed by 7989
Abstract
Physical layer network coding (PNC) is a promising technique to improve the network throughput in a two-way relay (TWR) channel for two users to exchange messages across a wireless network. The PNC technique incorporating a TWR channel is embraced by a free space [...] Read more.
Physical layer network coding (PNC) is a promising technique to improve the network throughput in a two-way relay (TWR) channel for two users to exchange messages across a wireless network. The PNC technique incorporating a TWR channel is embraced by a free space optical (FSO) communication link for full utilization of network resources, namely TWR-FSO PNC. In this paper, bit interleaved coded modulation with iterative decoding (BICM-ID) is adopted to combat the deleterious effect of the turbulence channel by saving the message being transmitted to increase the reliability of the system. Moreover, based on this technique, comparative studies between end-to-end BICM-ID code, non-iterative convolutional coded and uncoded systems are carried out. Furthermore, this paper presents the extrinsic information transfer (ExIT) charts to evaluate the performance of BICM-ID code combined with the TWR-FSO PNC system. The simulation results show that the proposed scheme can achieve a significant bit error rate (BER) performance improvement through the introduction of an iterative process between a soft demapper and decoder. Similarly, Monte Carlo simulation results are provided to support the findings. Subsequently, the ExIT functions of the two receiver components are thoroughly analysed for a variety of parameters under the influence of a turbulence-induced channel fading, demonstrating the convergence behaviour of BICM-ID to enable the TWR-FSO PNC system, effectively mitigating the impact of the fading turbulence channel. Full article
Show Figures

Figure 1

Back to TopTop