Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = bis-pyridazinones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 13579 KB  
Review
Therapeutic Potential of Tricyclic Pyridazinone-Based Molecules: An Overview
by Battistina Asproni, Gérard A. Pinna, Paola Corona, Silvia Coinu, Sandra Piras, Antonio Carta and Gabriele Murineddu
Int. J. Mol. Sci. 2025, 26(8), 3806; https://doi.org/10.3390/ijms26083806 - 17 Apr 2025
Cited by 1 | Viewed by 2067
Abstract
Pyridazin-3(2H)one-based molecules have always attracted the attention of medicinal chemists due to their different pharmacological properties. The incorporation of such nuclei in therapeutically active molecules either as monocyclic units or as fused bi- or tricyclic scaffolds results in a wide range [...] Read more.
Pyridazin-3(2H)one-based molecules have always attracted the attention of medicinal chemists due to their different pharmacological properties. The incorporation of such nuclei in therapeutically active molecules either as monocyclic units or as fused bi- or tricyclic scaffolds results in a wide range of pharmacological effects such as anti-inflammatory, analgesic, anticancer, antimicrobial, antiviral, cardiovascular-protective, antiulcer, and many other useful pharmacological activities. In accordance with our consolidated experience gained over the years in the chemistry and biology of tricyclic pyridazin-3(2H)ones, this review summarizes SAR studies of such pyridazinone-based polycyclic compounds endowed with various biological and therapeutic properties. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Design, and Biological Activity)
Show Figures

Figure 1

21 pages, 20591 KB  
Article
Synthetic and DFT Modeling Studies on Suzuki–Miyaura Reactions of 4,5-Dibromo-2-methylpyridazin-3(2H)-one with Ferrocene Boronates, Accompanied by Hydrodebromination and a Novel Bridge-Forming Annulation In Vitro Cytotoxic Activity of the Ferrocenyl–Pyridazinone Products
by Nour-Eddine El Alaoui, Mohammed Boulhaoua, Dániel Hutai, Rita Oláh-Szabó, Szilvia Bősze, Ferenc Hudecz and Antal Csámpai
Catalysts 2022, 12(6), 578; https://doi.org/10.3390/catal12060578 - 24 May 2022
Cited by 4 | Viewed by 4031
Abstract
This paper presented the efficiency of different Pd-based catalytic systems in a series of SM reactions of 4,5-dibromo-2-methylpyridazin-3(2H)-one with ferroceneboronic acid, ferrocene-1,1′-diboronoc acid, and its bis-pinacol ester. In addition to the disubstituted product, these transformations afford substantial amounts of isomeric [...] Read more.
This paper presented the efficiency of different Pd-based catalytic systems in a series of SM reactions of 4,5-dibromo-2-methylpyridazin-3(2H)-one with ferroceneboronic acid, ferrocene-1,1′-diboronoc acid, and its bis-pinacol ester. In addition to the disubstituted product, these transformations afford substantial amounts of isomeric 4- and 5-ferrocenyl-2-methylpyridazin-3(2H)-ones, and a unique asymmetric bi-pyridazinone-bridged ferrocenophane with a screwed molecular architecture. The reactions of phenylboronic acid, conducted under the conditions, are proven to be the most reductive in the conversions of ferroceneboronic acid, and produce 2-methyl-4,5-diphenylpyridazin-3(2H)-one as single product, supporting our view about solvent-mediated hydrodehalogenations that are supposed to proceed via the assistance of the ferrocenyl group present in the reaction mixture, or attached to the bromo-pyridazinone scaffold, which is constructed in the first SM coupling of the heterocyclic precursor. A comparative DFT modelling study on the structures and possible transformations of relevant bromo-, ferrocene- and phenyl-containing carbopalladated intermediate pairs was carried out, providing reasonable mechanisms suitable to account for the apparently surprising regioselectivity of the alternative hydrodebromination processes, and for the formation of the ferrocenophane product. Supporting the results of DFT modelling studies, the implication of DMF as a hydrogen transfer agent in the hydrodebromination reactions is evidenced by deuterium labelling experiments using the solvent mixtures DMF-d7–H2O (4:1) and DMF–D2O (4:1). The organometallic products display antiproliferative effects on human malignant cell lines. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis II)
Show Figures

Figure 1

1 pages, 129 KB  
Abstract
Bis-Pyridazine Derivatives with Anticancer Activity
by Amariucai-Mantu Dorina, Mangalagiu I. Ionel, Antoci Vasilichia and Mangalagiu Violeta
Proceedings 2019, 22(1), 6; https://doi.org/10.3390/proceedings2019022006 - 6 Aug 2019
Viewed by 1693
Abstract
Over the last decades, pyridazine derivatives are considered “privileged structures” in medicinal chemistry, with special attention being given to pyridazinones derivatives, which were found to have a large range of biological activities, including anticancer. On the other hand, because of the huge difficulties [...] Read more.
Over the last decades, pyridazine derivatives are considered “privileged structures” in medicinal chemistry, with special attention being given to pyridazinones derivatives, which were found to have a large range of biological activities, including anticancer. On the other hand, because of the huge difficulties in cancer treatment, there is an urgent need from the pharmaceutical industry for new anticancer drug candidates. As part of our ongoing efforts in searching for new biologically active entities with anticancer potential, we report here the design, synthesis, structure and in vitro anticancer activity of a new class of pyridazinones derivatives, namely bis-pyridazinones. The structures of the compounds were proven by elemental and spectral analysis: IR, LC-MS, 1H-NMR, 13C-NMR, two-dimensional experiments 2D-COSY, HMQC, and HMBC. A few of the compounds were accepted by the National Cancer Institute (USA) for anticancer screening and were evaluated for their in vitro cytotoxic activity against a panel of 60 human tumor cell lines, representing cancers of the brain, breast, colon, kidney, lung, ovary, prostate, as well as leukemia and melanoma. Three of the tested compounds have proven to be active against non-small cell lung cancer HOP 92 and NCI-H226, CNC cancer SNB-75, renal cancer A498 and UO-31, with a growth inhibition between 50–80 mM. Interestingly, one compound (unsubstituted bis-pyridazinones I) has a selective anticancer activity, being active only on non-small cell lung cancer HOP 92, with a growth inhibition of 51.45 mM. SAR correlation has been performed. Full article
Back to TopTop