Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = biobased poly(furfuryl alcohol)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4128 KB  
Article
Preparation of Biobased Printed Circuit Board Prototypes Using Poly(furfuryl alcohol) Resin
by Aidan M. Carrigan, Joseph Valentine, Maria L. K. Viitaniemi, Kali Frost, Bichlien H. Nguyen, John D. Lincoln and Antonios Tontisakis
Electronics 2023, 12(23), 4729; https://doi.org/10.3390/electronics12234729 - 22 Nov 2023
Cited by 1 | Viewed by 2564
Abstract
The present study explores the processability and properties of poly(furfuryl alcohol) (PFA)-based composites and draws comparisons with the industry-standard epoxy resin matrices used in printed circuit board applications. A poly(furfuryl alcohol)-based fiberglass prepreg was used to manufacture composite cores laminated with copper foil, [...] Read more.
The present study explores the processability and properties of poly(furfuryl alcohol) (PFA)-based composites and draws comparisons with the industry-standard epoxy resin matrices used in printed circuit board applications. A poly(furfuryl alcohol)-based fiberglass prepreg was used to manufacture composite cores laminated with copper foil, which were then integrated in situ into printed circuit board prototypes through industry-typical manufacturing and assembly processes. Both copper cores and printed boards were tested to characterize the electrical properties and overall quality of the prototypes. The fabrication of the copper cores and manufacturing methods of the printed boards are described, alongside the results from the characterization of the cores and the testing of the printed boards. The inherent advantages and disadvantages of the material are highlighted, and areas of improvement for the processability of the material and reliability of the technology are discussed. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

18 pages, 8309 KB  
Article
Structural Variations in Biobased Polyfurfuryl Alcohol Induced by Polymerization in Water
by Pierre Delliere, Antonio Pizzi and Nathanael Guigo
Polymers 2023, 15(7), 1745; https://doi.org/10.3390/polym15071745 - 31 Mar 2023
Cited by 10 | Viewed by 4389
Abstract
Poly(furfuryl alcohol) is a thermostable biobased thermoset. The polymerization of furfuryl alcohol (FA) is sensitive to a number of side reactions, mainly the opening of the furan ring into carbonyl species. Such carbonyls can be used to introduce new properties into the PFA [...] Read more.
Poly(furfuryl alcohol) is a thermostable biobased thermoset. The polymerization of furfuryl alcohol (FA) is sensitive to a number of side reactions, mainly the opening of the furan ring into carbonyl species. Such carbonyls can be used to introduce new properties into the PFA materials through derivatization. Hence, better understanding of the furan ring opening is required to develop new applications for PFA. This article studies the structural discrepancies between a PFA prepared in neat conditions versus a PFA prepared in aqueous conditions, i.e., with more carbonyls, through NMR and MALDI ToF. Overall, the PFA prepared in water exhibited a structure more heterogeneous than the PFA prepared in neat conditions. The presence of ketonic derivatives such as enols and ketals were highlighted in the case of the aqueous PFA. In this line, the addition of water at the beginning of the polymerization stimulated the production of aldehydes by a factor two. Finally, the PFA prepared in neat conditions showed terminal lactones instead of aldehydes. Full article
Show Figures

Figure 1

13 pages, 2073 KB  
Article
Conditions to Control Furan Ring Opening during Furfuryl Alcohol Polymerization
by Lucie Quinquet, Pierre Delliere and Nathanael Guigo
Molecules 2022, 27(10), 3212; https://doi.org/10.3390/molecules27103212 - 17 May 2022
Cited by 15 | Viewed by 5313
Abstract
The chemistry of biomass-derived furans is particularly sensitive to ring openings. These side reactions occur during furfuryl alcohol polymerization. In this work, the furan ring-opening was controlled by changing polymerization conditions, such as varying the type of acidic initiator or the water content. [...] Read more.
The chemistry of biomass-derived furans is particularly sensitive to ring openings. These side reactions occur during furfuryl alcohol polymerization. In this work, the furan ring-opening was controlled by changing polymerization conditions, such as varying the type of acidic initiator or the water content. The degree of open structures (DOS) was determined by quantifying the formed carbonyl species by means of quantitative 19F NMR and potentiometric titration. The progress of polymerization and ring opening were monitored by DSC and FT-IR spectroscopy. The presence of additional water is more determining on ring opening than the nature of the acidic initiator. Qualitative structural assessment by means of 13C NMR and FT-IR shows that, depending on the employed conditions, poly(furfuryl alcohol) samples can be classified in two groups. Indeed, either more ester or more ketone side groups are formed as a result of side ring opening reactions. The absence of additional water during FA polymerization preferentially leads to opened structures in the PFA bearing more ester moieties. Full article
(This article belongs to the Special Issue Natural Polymers and Biopolymers III)
Show Figures

Figure 1

Back to TopTop