Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = biamperometric detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4226 KB  
Article
Pathogen-on-a-Chip: Impedance-Based Detection of Biofilm Formation of Staphylococcus aureus and Staphylococcus epidermidis
by Bengisu Yöney, Radka Obořilová, Karel Lacina, Zdeněk Farka and Petr Skládal
Biosensors 2025, 15(9), 596; https://doi.org/10.3390/bios15090596 - 10 Sep 2025
Viewed by 1008
Abstract
Bacterial biofilms are complex microbial communities that contribute to the pathogenesis of chronic infections. Therefore, it is crucial to detect biofilm-associated infections in early stages as their delayed treatment becomes more complicated. Herein, we describe a label-free electrochemical impedance spectroscopy (EIS) method for [...] Read more.
Bacterial biofilms are complex microbial communities that contribute to the pathogenesis of chronic infections. Therefore, it is crucial to detect biofilm-associated infections in early stages as their delayed treatment becomes more complicated. Herein, we describe a label-free electrochemical impedance spectroscopy (EIS) method for detecting biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. Printed circuit board-based biamperometric gold electrodes were modified with poly-L-lysine to enhance bacterial attachment to the sensor surface. Formation and inhibition of biofilms were evaluated based on changes in charge transfer resistance (Rct). The control Rct value increased by ~90 kΩ for S. epidermidis biofilm and by ~60 kΩ for S. aureus biofilms. Antibiotic-treated samples exhibited similar values to those using the control. In addition, biofilm formation was evaluated through optical microscopy using safranin staining, and the micrographs suggest significant biomass on the electrodes, whereas the control appeared clear. Atomic force microscopy was used to visualize the biofilm on the electrode surface, obtain cross-sectional profiles, and evaluate its roughness. The roughness parameters indicate that S. aureus forms a rougher biofilm than S. epidermidis, while S. epidermidis forms a more compact biofilm. These findings suggest that the optimized EIS-based method effectively monitors changes related to biofilms and serves as a promising tool for evaluation of new anti-biofilm agents, such as antibiotics, phages or antibodies. Full article
Show Figures

Graphical abstract

19 pages, 8597 KB  
Article
Insights into the Structure–Capacity of Food Antioxidant Compounds Assessed Using Coulometry
by Francesco Siano, Anna Sofia Sammarco, Olga Fierro, Domenico Castaldo, Tonino Caruso, Gianluca Picariello and Ermanno Vasca
Antioxidants 2023, 12(11), 1963; https://doi.org/10.3390/antiox12111963 - 3 Nov 2023
Cited by 8 | Viewed by 2478
Abstract
CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, [...] Read more.
CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e mol−1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure–activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis. Full article
(This article belongs to the Special Issue Electrochemical Methods for Antioxidant Activity Detection 2.0)
Show Figures

Figure 1

Back to TopTop