Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = beta-carboline alkaloids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 883 KiB  
Article
Evaluation of the Formation of Six Beta-Carboline Alkaloids, a Class of Natural Toxins, in Meat Products Using Liquid Chromatography Tandem Mass Spectrometry
by Kyung-Jik Lim, Do-Kyeong Lee and Han-Seung Shin
Toxins 2025, 17(6), 266; https://doi.org/10.3390/toxins17060266 - 27 May 2025
Cited by 1 | Viewed by 711
Abstract
Beta-carboline alkaloids (βC-alkaloids) are natural toxins found in various foods, and can also form during the thermal processing of protein-rich ingredients. This study investigated the formation of six βC-alkaloids in pork belly, beef sirloin, mackerel, and cutlassfish subjected to pan-frying, boiling, steaming, and [...] Read more.
Beta-carboline alkaloids (βC-alkaloids) are natural toxins found in various foods, and can also form during the thermal processing of protein-rich ingredients. This study investigated the formation of six βC-alkaloids in pork belly, beef sirloin, mackerel, and cutlassfish subjected to pan-frying, boiling, steaming, and air-frying at 170–250 °C for 2–24 min. Microwave pretreatment (1–5 min) was applied prior to cooking to assess its mitigation potential. Quantification was performed using liquid chromatography tandem mass spectrometry (LC-MS/MS). Pan-frying significantly promoted βC-alkaloid formation, with harman and norharman levels reaching up to 534.63 µg/kg and 217.06 µg/kg in beef sirloin, and 212.44 µg/kg and 533.01 µg/kg in cutlassfish, respectively. Air-frying generated lower alkaloid levels overall compared to pan-frying. Microwave pretreatment effectively mitigated alkaloid formation. The pretreatment of beef sirloin for 2 min resulted in a reduction in the norharman and harmaline levels by 78.4% and 96.5%, respectively. This study provides a comprehensive comparison of six βC-alkaloids across various food types and cooking methods, demonstrating the influence of cooking parameters on alkaloid formation. This study underscores the importance of understanding the thermal formation of natural toxins in foods and offers insight into practical strategies to minimize their occurrence in daily diets. Full article
Show Figures

Figure 1

14 pages, 10224 KiB  
Article
Picrasidine J, a Dimeric β-Carboline-Type Alkaloid from Picrasma quassioides, Inhibits Metastasis of Head and Neck Squamous Cell Carcinoma
by Hsin-Yu Ho, Chia-Chieh Lin, Yu-Sheng Lo, Yi-Ching Chuang, Mosleh Mohammad Abomughaid and Ming-Ju Hsieh
Int. J. Mol. Sci. 2023, 24(17), 13230; https://doi.org/10.3390/ijms241713230 - 25 Aug 2023
Cited by 3 | Viewed by 1734
Abstract
Head and neck squamous cell carcinoma (HNSCC) are associated with recurrence, distant metastasis, and poor overall survival. This highlights the need for identifying potential therapeutics with minimal side-effects. The present study was designed to investigate the anticancer effects of picrasidine J, a dimeric [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) are associated with recurrence, distant metastasis, and poor overall survival. This highlights the need for identifying potential therapeutics with minimal side-effects. The present study was designed to investigate the anticancer effects of picrasidine J, a dimeric β-carboline-type alkaloid isolated from the southern Asian plant Picrasma quassioides. The results showed that picrasidine J significantly inhibits HNSCC cell motility, migration, and invasion. Specifically, picrasidine J inhibited the EMT process by upregulating E-cadherin and ZO-1 and downregulating beta-catenin and Snail. Moreover, picrasidine J reduced the expression of the serine protease KLK-10. At the signaling level, the compound reduced the phosphorylation of ERK. All these factors collectively facilitated the inhibition of HNSCC metastasis with picrasidine J. Taken together, the study identifies picrasidine J as a potential anticancer compound of plant origin that might be used clinically to prevent the distant metastasis and progression of HNSCC. Full article
Show Figures

Figure 1

11 pages, 992 KiB  
Article
Lethal and Sublethal Toxicity of Beta-Carboline Alkaloids from Peganum harmala (L.) against Aedes albopictus Larvae (Diptera: Culicidae)
by Nan Jiang, Li Chen, Jinmei Li, Wenyong Li and Shuanglin Jiang
Toxics 2023, 11(4), 341; https://doi.org/10.3390/toxics11040341 - 3 Apr 2023
Cited by 6 | Viewed by 2536
Abstract
Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and [...] Read more.
Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and beta-carboline alkaloids (harmaline, harmine, harmalol, and harman) from Peganum harmala seeds were isolated and tested in this bioassay. All alkaloids were tested either individually or as binary mixtures, using the co-toxicity coefficient (CTC) and Abbott’s formula analysis. The results revealed considerable toxicity of the tested alkaloids against A. albopictus larvae. When all larval instars were exposed to the TAEs at 48 h post-treatment, the mortality of all larval instars varied in a concentration-dependent manner. The second-instar larvae were the most susceptible to different concentrations of TAEs, and the fourth-instar larvae were more tolerant to TAEs than the second-instar larvae. Especially, the third-instar larvae exposed to all alkaloids also showed that all doses resulted in an increased mortality of the third-instar larvae at 48 h post-treatment, and the toxicities of the tested alkaloids in a descending order were TAEs > harmaline > harmine > harmalol, with the LC50 values of 44.54 ± 2.56, 55.51 ± 3.01, 93.67 ± 4.53, and 117.87 ± 5.61 μg/mL at 48 h post-treatment, respectively. In addition, all compounds were also tested individually or in a 1:1 ratio (dose LC25/LC25) as binary mixtures to assess the synergistic toxicity of these binary combinations against the third-instar larvae at 24 and 48 h post-treatment, respectively. The results demonstrated that when tested as a binary mixture, all compounds (especially TAEs, harmaline, and harmine) showed their synergistic effects, exceeding the toxicity of each compound alone. Interestingly, the obtained data further revealed that the TAEs at sublethal doses (LC10 and LC25) could significantly delay the larval development and decrease the pupation and emergence rates of A. albopictus. This phenomenon could be helpful in order to develop more effective control strategies for different notorious vector mosquitoes. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

13 pages, 2771 KiB  
Article
Harmine Inhibits Multiple TLR-Induced Inflammatory Expression through Modulation of NF-κB p65, JNK, and STAT1
by So-Jung Jin, Youngju Song, Hong Shik Park, Kye Won Park, SeungGwan Lee and Hee Kang
Life 2022, 12(12), 2022; https://doi.org/10.3390/life12122022 - 3 Dec 2022
Cited by 8 | Viewed by 2572
Abstract
Harmine is a beta-carboline alkaloid present in various plants, including in the seeds of Peganum harmala L. This study aimed to investigate the anti-inflammatory activity and mechanism of harmine using macrophages stimulated with various toll-like receptor (TLR) agonists and a model of endotoxemia. [...] Read more.
Harmine is a beta-carboline alkaloid present in various plants, including in the seeds of Peganum harmala L. This study aimed to investigate the anti-inflammatory activity and mechanism of harmine using macrophages stimulated with various toll-like receptor (TLR) agonists and a model of endotoxemia. The expression of inflammatory mediators induced by ligands of TLRs 2, 3, 4, and 9 were examined in thioglycollate-elicited peritoneal macrophages isolated from BALB/c and C57BL/6 mouse strains. Further, the activation of NF-κB, MAPK, AP-1, and STAT1 was explored using lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly(I:C)). Finally, the liver inflammatory response during endotoxemia was examined. Harmine inhibited inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-12, and other markers induced by various TLR agonists. The inhibition of NF-κB activity by harmine occurred via the modulation of p65 phosphorylation, independent of IκBα degradation. The inhibition of AP-1 activity by harmine was associated with the modulation of JNK. Harmine inhibited the LPS-induced serine and tyrosine phosphorylation of STAT1, but only affected serine phosphorylation by poly(I:C) treatment. In vivo, harmine inhibited iNOS and COX-2 expression during endotoxemia. Collectively, the results show that harmine can be effective against infectious inflammation through modulation of NF-κB, JNK, and STAT1. Full article
Show Figures

Figure 1

38 pages, 4935 KiB  
Review
Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery
by Maris A. Cinelli and A. Daniel Jones
Molecules 2021, 26(9), 2629; https://doi.org/10.3390/molecules26092629 - 30 Apr 2021
Cited by 38 | Viewed by 9704
Abstract
The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus’ particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. [...] Read more.
The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus’ particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery—from not just Datura—has the potential to accelerate dramatically in the near future. Full article
Show Figures

Figure 1

14 pages, 2318 KiB  
Article
Evaluation of the Cytotoxicity of Ayahuasca Beverages
by Ana Y. Simão, Joana Gonçalves, Ana Gradillas, Antonia García, José Restolho, Nicolás Fernández, Jesus M. Rodilla, Mário Barroso, Ana Paula Duarte, Ana C. Cristóvão and Eugenia Gallardo
Molecules 2020, 25(23), 5594; https://doi.org/10.3390/molecules25235594 - 28 Nov 2020
Cited by 13 | Viewed by 4375 | Correction
Abstract
Ayahuasca is a beverage consumed at shamanic ceremonies and currently has gained popularity on recreational scenarios. It contains beta-carboline alkaloids and N,N-dimethyltryptamine, which possesses hallucinogenic effects. Only a few studies have elicited the psychoactive effects and the dose of such [...] Read more.
Ayahuasca is a beverage consumed at shamanic ceremonies and currently has gained popularity on recreational scenarios. It contains beta-carboline alkaloids and N,N-dimethyltryptamine, which possesses hallucinogenic effects. Only a few studies have elicited the psychoactive effects and the dose of such compounds on neurological dopaminergic cells or animals. In this work, we aimed to study the cytotoxic effects of these compounds present in ayahuasca beverages and on five different teas (Banisteriopsis caapi, Psychotria viridis, Peganum harmala, Mimosa tenuiflora and Dc Ab (commercial name)) preparations on dopaminergic immortalized cell lines. Moreover, a characterization of the derivative alkaloids was also performed. All the extracts were characterized by chromatographic systems and the effect of those compounds in cell viability and total protein levels were analyzed in N27 dopaminergic neurons cell line. This is the first article where cytotoxicity of ayahuasca tea is studied on neurological dopaminergic cells. Overall, results showed that both cell viability and protein contents decreased when cells were exposed to the individual compounds, as well as to the teas and to the two mixtures based on the traditional ayahuasca beverages. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds)
Show Figures

Figure 1

17 pages, 2010 KiB  
Article
Potential Pharmacokinetic Drug–Drug Interaction Between Harmine, a Cholinesterase Inhibitor, and Memantine, a Non-Competitive N-Methyl-d-Aspartate Receptor Antagonist
by Yunpeng Zhang, Shuping Li, Youxu Wang, Gang Deng, Ning Cao, Chao Wu, Wenzheng Ding, Yuwen Wang, Xuemei Cheng and Changhong Wang
Molecules 2019, 24(7), 1430; https://doi.org/10.3390/molecules24071430 - 11 Apr 2019
Cited by 7 | Viewed by 5103
Abstract
Harmine (HAR) is a beta-carboline alkaloid widely distributed in nature. It exhibits psychopharmacological effects of improving learning and memory. However, excessive dose of HAR can cause central tremor toxicity, which may be related to the glutamate system. Memantine (MEM) is a non-competitive N [...] Read more.
Harmine (HAR) is a beta-carboline alkaloid widely distributed in nature. It exhibits psychopharmacological effects of improving learning and memory. However, excessive dose of HAR can cause central tremor toxicity, which may be related to the glutamate system. Memantine (MEM) is a non-competitive N-methyl-d-aspartate receptor antagonist. It can be used for the treatment of Alzheimer’s disease and also can block the neurotoxicity caused by glutamate. Therefore, combination of HAR and MEM would be meaningful and the pharmacokinetics investigation of HAR and MEM in combination is necessary. A ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the simultaneous quantitative determination of MEM, HAR and harmol (HOL), a main metabolite of HAR, in rat plasma after oral administration of HAR and MEM in combination (5.0 mg/kg of MEM combined with 20.0, 40.0, 80.0 mg/kg of HAR). The contents of HAR and HOL were determined after oral administration of HAR (20.0, 40.0 and 80.0 mg/kg), and the content of MEM was determined after oral administration of MEM (5.0 mg/kg). Blood samples were collected from each rat at 0 (pre-dose), 0.08, 0.17, 0.25, 0.33, 0.50, 0.75, 1.0, 2.0, 4.0, 8.0, 12.0 and 24.0 h after administration. The maximum peak concentration (Cmax) of MEM was obviously decreased, and the area under the plasma concentration versus time curve from zero to time t (AUC(0-t)) and mean residence time (MRT) were significantly increased after combination with HAR. The Cmax and AUC(0-t) of HAR and its metabolite HOL were increased after combination with MEM. These findings suggested that co-administration of HAR and MEM could extend their residence time in rats, and then might increase the efficacy for treatment of Alzheimer’s disease. Therefore, this study will provide a basis for the rational combined application of HAR and MEM. Full article
Show Figures

Graphical abstract

13 pages, 1798 KiB  
Article
Flavopereirine—An Alkaloid Derived from Geissospermum vellosii—Presents Leishmanicidal Activity In Vitro
by João Victor da Silva e Silva, Helliton Patrick Cordovil Brigido, Kelly Cristina Oliveira de Albuquerque, Josiwander Miranda Carvalho, Jordano Ferreira Reis, Lara Vinhal Faria, Márlia Regina Coelho-Ferreira, Fernando Tobias Silveira, Agnaldo da Silva Carneiro, Sandro Percário, Andrey Moacir do Rosário Marinho and Maria Fâni Dolabela
Molecules 2019, 24(4), 785; https://doi.org/10.3390/molecules24040785 - 21 Feb 2019
Cited by 19 | Viewed by 5146
Abstract
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, [...] Read more.
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, an in silico evaluation of the physicochemical characteristics of this alkaloid is performed. The extract and fractions were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid identified by NMR. The antileishmanial activity and cytotoxicity were assayed by cell viability test (MTT). The theoretical molecular properties were calculated on the Molinspiration website. The fractionation made it possible to isolate a beta-carboline alkaloid (flavopereirine) in the alkaloid fraction. Moreover, it led to obtaining a fraction with greater antileishmanial activity, since flavopereirine is very active. Regarding the exposure time, a greater inhibitory effect of flavopereirine was observed at 24 h and 72 h (IC50 of 0.23 and 0.15 μg/mL, respectively). The extract, fractions, and flavopereirine presented low toxicity, with high selectivity for the alkaloid. Furthermore, flavopereirine showed no violation of Lipinski’s rule of five, showing even better results than the known inhibitor of oligopeptidase B, antipain, with three violations. Flavopereirine also interacted with residue Tyr-499 of oligopeptidase B during the molecular dynamics simulations, giving a few insights of a possible favorable mechanism of interaction and a possible inhibitory pathway. Flavopereirine proved to be a promising molecule for its antileishmanial activity. Full article
(This article belongs to the Special Issue Natural Product Pharmacology and Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop