Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = beta-barium borate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10621 KiB  
Article
Performance Analysis of Six Electro-Optical Crystals in a High-Bandwidth Traveling Wave Mach-Zehnder Light Modulator
by Abtin Ataei, Paul McManamon and Andrew Sarangan
Photonics 2024, 11(6), 498; https://doi.org/10.3390/photonics11060498 - 24 May 2024
Viewed by 1077
Abstract
In this study, a traveling wave Mach-Zehnder intensity modulator (TW-MZM) was designed and optimized for six different electro-optical (EO) crystals: lithium niobate (LNB), potassium niobate (KNB), lithium titanate (LTO), beta barium borate (BBO), cadmium telluride (CdTe), and indium phosphide (InP). The performance of [...] Read more.
In this study, a traveling wave Mach-Zehnder intensity modulator (TW-MZM) was designed and optimized for six different electro-optical (EO) crystals: lithium niobate (LNB), potassium niobate (KNB), lithium titanate (LTO), beta barium borate (BBO), cadmium telluride (CdTe), and indium phosphide (InP). The performance of each EO crystal, including optical and radio frequency (RF) loss, applied voltage, and modulation bandwidth, was estimated and compared. The results suggest that, in theory, KNB, LTO, BBO, and CdTe have the potential to outperform LNB. However, it should be noted that the loss associated with KNB and LTO is comparable to that of LNB. The findings demonstrated that BBO and CdTe exhibit a modulation bandwidth exceeding 100 GHz and demonstrate the lowest loss among the considered crystals based on the assumed geometry. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

10 pages, 2157 KiB  
Communication
Fabrication of Beta-Barium Borate Sensing Head for Non-Invasive Measurement of Fluidic Concentration Variations
by Ruey-Ching Twu and Yi-Ren Sun
Sensors 2022, 22(24), 9566; https://doi.org/10.3390/s22249566 - 7 Dec 2022
Viewed by 1512
Abstract
In this study, a beta-barium borate sensing head (BBO-SH) was fabricated and evaluated for the measurements of fluidic concentration variations by using a non-invasive technique. The BBO-SH could be coupled to a fluidic container through thin interlayer water in a heterodyne interferometer based [...] Read more.
In this study, a beta-barium borate sensing head (BBO-SH) was fabricated and evaluated for the measurements of fluidic concentration variations by using a non-invasive technique. The BBO-SH could be coupled to a fluidic container through thin interlayer water in a heterodyne interferometer based on the phase interrogation. To ensure the sensing head’s stability, the package of BBO-SH uses the prism and the coverslip bounded with UV glue, which can resist environmental damage due to moisture. After each use, the sensing head could be easily cleaned. The sensitivity of the BBO-SH remained stable after repeated measurements over a period of 139 days. Finally, the achievable measurement resolutions of the concentration and refractive index are 52 ppm and 1 × 10−6 RIU, respectively, for the sodium chloride solution. The achievable measurement resolutions of the concentration and refractive index were 55 ppm and 8.8 × 10−7 RIU, respectively, for the hydrochloric acid solution. Full article
(This article belongs to the Special Issue Smart Sensors for Biological Application)
Show Figures

Figure 1

30 pages, 1466 KiB  
Article
Exact Solutions for Vector Phase-Matching Conditions in Nonlinear Uniaxial Crystals
by Juan López-Durán and Oscar Rosas-Ortiz
Symmetry 2022, 14(11), 2272; https://doi.org/10.3390/sym14112272 - 29 Oct 2022
Cited by 2 | Viewed by 3851
Abstract
The transcendental equations of vector phase matching are transformed into a fourth-order polynomial equation that admits an analytical solution. The real roots of this equation provide the optical axis orientations that are useful for efficient down-conversion in nonlinear uniaxial crystals. The production of [...] Read more.
The transcendental equations of vector phase matching are transformed into a fourth-order polynomial equation that admits an analytical solution. The real roots of this equation provide the optical axis orientations that are useful for efficient down-conversion in nonlinear uniaxial crystals. The production of entangled photon pairs is discussed in both collinear and non-collinear configurations of the spontaneous parametric down-conversion (SPDC) process. Degenerate and non-degenerate cases are also distinguished. As a practical example, SPDC processes of type-I and type-II are studied for beta-barium borate (BBO) crystals. The predictions are in very good agreement with experimental measurements already reported in the literature and include theoretical results of other authors as particular cases. Some properties that seem to be exclusive to BBO crystals are reported; the experimental verification of the latter would allow a better characterization of these crystals. Full article
(This article belongs to the Special Issue Advances in Photonics)
Show Figures

Figure 1

12 pages, 770 KiB  
Communication
High-Precision Voltage Measurement for Optical Quantum Computation
by Kamil Wereszczyński, Agnieszka Michalczuk, Marcin Paszkuta and Jacek Gumiela
Energies 2022, 15(12), 4205; https://doi.org/10.3390/en15124205 - 7 Jun 2022
Cited by 4 | Viewed by 2045
Abstract
This paper presents a theoretical study into the use of optical systems for quantum computation. The study results pertain to quantum sampling and quantum communication and provide a basis for further research and the development of a physical implementation. We propose an optical [...] Read more.
This paper presents a theoretical study into the use of optical systems for quantum computation. The study results pertain to quantum sampling and quantum communication and provide a basis for further research and the development of a physical implementation. We propose an optical superstructure that can implement specific computation processes and algorithms. The superstructure is composed of nonlinear optical units, such as beta barium borate crystals. The units are positioned in series, powered by a pulse laser pump, and culminate in a beam splitter that generates the output state of a number of entangled photon pairs. Computation is achieved by entanglement propagation via beam splitters and adjustable phase shifters, which set related parameters. Demonstrating a two-component case, we show how a series of cosine-based components can be implemented. The obtained results open a broad front for future research. Future work should investigate the construction of a quantum optimizer using quantum sampling methods and also investigate high-precision temporal voltage measurement, which is a key procedure for the construction of high-fidelity devices. Full article
Show Figures

Figure 1

15 pages, 3408 KiB  
Article
Modulated Noncollinear Optical Parametric Amplifier Output Induced by Stimulated Raman Scattering
by Takayoshi Kobayashi, Zhuan Wang and Jun Liu
Appl. Sci. 2021, 11(16), 7578; https://doi.org/10.3390/app11167578 - 18 Aug 2021
Viewed by 1978
Abstract
We studied spectra of the amplified signal from a noncollinear optical parametric amplifier (NOPA) based on a Ti:sapphire laser and BBO crystal gain medium. The signal shows characteristic structures with periodic intensity variations in the signal during the parametric amplification processes in a [...] Read more.
We studied spectra of the amplified signal from a noncollinear optical parametric amplifier (NOPA) based on a Ti:sapphire laser and BBO crystal gain medium. The signal shows characteristic structures with periodic intensity variations in the signal during the parametric amplification processes in a BBO crystal. This phenomenon is attributed to the stimulated Raman process excited by the pump pulse affected by the phase-matching condition of four-wave mixing. The effect of this stimulated Raman process on optical parametric amplification and on final pulse compression of the signal was analyzed. The results demonstrate that caution must be taken when constructing a NOPA. Specifically, great care must be taken not to use mirrors with non-uniform spectral reflectivity for obtaining a stable pulse in terms of both temporal and spectral shapes. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

28 pages, 5331 KiB  
Review
Femtosecond Laser Pulses Amplification in Crystals
by Razvan Dabu
Crystals 2019, 9(7), 347; https://doi.org/10.3390/cryst9070347 - 5 Jul 2019
Cited by 7 | Viewed by 8530
Abstract
This paper describes techniques for high-energy laser pulse amplification in multi-PW femtosecond laser pulses. Femtosecond laser pulses can be generated and amplified in laser media with a broad emission spectral bandwidth, like Ti:sapphire crystals. By chirped pulse amplification (CPA) techniques, hundred-Joule amplified laser [...] Read more.
This paper describes techniques for high-energy laser pulse amplification in multi-PW femtosecond laser pulses. Femtosecond laser pulses can be generated and amplified in laser media with a broad emission spectral bandwidth, like Ti:sapphire crystals. By chirped pulse amplification (CPA) techniques, hundred-Joule amplified laser pulses can be obtained. Multi-PW peak-power femtosecond pulses are generated after recompression of amplified chirped laser pulses. The characteristics and problems of large bandwidth laser pulses amplification in Ti:sapphire crystals are discussed. An alternative technique, based on optical parametric chirped pulse amplification (OPCPA) in nonlinear crystals, is presented. Phase-matching conditions for broad bandwidth parametric amplification in nonlinear crystals are inferred. Ultra-broad phase matching bandwidth of more than 100 nm, able to support the amplification of sub-10 fs laser pulses, are demonstrated in nonlinear crystals, such as Beta Barium Borate (BBO), Potassium Dideuterium Phosphate (DKDP), and Lithium Triborate (LBO). The advantages and drawbacks of CPA amplification in laser crystals and OPCPA in nonlinear crystals are discussed. A hybrid amplification method, which combines low-medium energy OPCPA in nonlinear crystals with high energy CPA in large aperture laser crystals, is described. This technique is currently used for the development of 10-PW laser systems, with sub-20 fs pulse duration and more than 1012 intensity contrast of output femtosecond pulses. Full article
(This article belongs to the Special Issue Laser Crystals)
Show Figures

Figure 1

10 pages, 4394 KiB  
Article
Investigation of Piezoelectric Ringing Frequency Response of Beta Barium Borate Crystals
by Giedrius Sinkevicius and Algirdas Baskys
Crystals 2019, 9(1), 49; https://doi.org/10.3390/cryst9010049 - 17 Jan 2019
Cited by 10 | Viewed by 5732
Abstract
The piezoelectric ringing phenomenon in Pockels cells based on the beta barium borate crystals was analyzed in this work. The investigation results show that piezoelectric ringing is caused by multiple high voltage pulses with a frequency in the range from 10 kHz up [...] Read more.
The piezoelectric ringing phenomenon in Pockels cells based on the beta barium borate crystals was analyzed in this work. The investigation results show that piezoelectric ringing is caused by multiple high voltage pulses with a frequency in the range from 10 kHz up to 1 MHz. Experimental investigation of frequency response and Discrete Fourier transformation was used for analysis. The method of piezoelectric ringing investigation based on the analysis of difference of real and simulated optical signals spectrums was proposed. The investigations were performed for crystals with 3 × 3 × 25 mm, 4 × 4 × 25 mm and 4 × 4 × 20 mm dimensions. It was estimated that piezoelectric ringing in the beta barium borate crystal with dimensions of 3 × 3 mm × 25 mm occurred at the 150, 205, 445, 600 and 750 kHz frequencies of high voltage pulses. Full article
(This article belongs to the Special Issue Crystal Growth of Multifunctional Borates and Related Materials)
Show Figures

Figure 1

Back to TopTop