Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = beef tallow butyl ester biodiesel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4095 KiB  
Article
Density and Viscosity in Biodiesel + Diesel Mixtures from Recycled Feedstocks
by Gabriela Sánchez-Rodríguez, José Domenzaín-González, Francisco Javier Verónico-Sánchez, Hugo Isidro Pérez-López, Abel Zúñiga-Moreno and Octavio Elizalde-Solis
Appl. Sci. 2025, 15(7), 3812; https://doi.org/10.3390/app15073812 - 31 Mar 2025
Cited by 2 | Viewed by 911
Abstract
The objective of this work was to study the volumetric and transport properties of mixtures made up of biodiesel and diesel, in order to meet the desirable properties of these formulations for their practical applications. The volumetric and transport properties were analyzed for [...] Read more.
The objective of this work was to study the volumetric and transport properties of mixtures made up of biodiesel and diesel, in order to meet the desirable properties of these formulations for their practical applications. The volumetric and transport properties were analyzed for two pseudobinary mixtures constituted of diesel + beef tallow butyl ester biodiesel and diesel + waste cooking oil methyl ester biodiesel in the whole range of composition at 0.078 MPa. The study of butyl ester biodiesel was motivated by the scarcity of these properties’ data for butyl esters and the improvement of some of its physicochemical properties. The biofuels were previously transesterified from waste materials and alcohols, beef tallow with 1-butanol and cooking oil with methanol. Density measurements were performed in a vibrating tube densimeter from 293.15 to 363.15 K; the kinematic viscosity experiments were carried out in Cannon-Fenske viscometers from 293.15 to 343.15 K. The derived thermophysical properties evaluated were the excess molar volume, the partial molar volume, the thermal expansion coefficient, the dynamic viscosity and the viscosity deviation. The excess molar volumes presented positive and negative values. The Redlich–Kister correlation and the theoretical ERAS (Extended Real Association Solution) model were applied for modelling the excess molar volume. Both approaches resulted in good agreement. For viscosity, the McAllister model was implemented and yielded lower deviations for the butyl ester biodiesel. Full article
(This article belongs to the Special Issue Sustainable Energy and Fuels from Biomass and Plastic Waste)
Show Figures

Figure 1

15 pages, 1764 KiB  
Article
Fatty Acid Alkyl Ester Production by One-Step Supercritical Transesterification of Beef Tallow by Using Ethanol, Iso-Butanol, and 1-Butanol
by Ricardo García-Morales, Francisco J. Verónico-Sánchez, Abel Zúñiga-Moreno, Oscar A. González-Vargas, Edgar Ramírez-Jiménez and Octavio Elizalde-Solis
Processes 2023, 11(3), 742; https://doi.org/10.3390/pr11030742 - 2 Mar 2023
Cited by 5 | Viewed by 2553
Abstract
The effect of temperature was studied on the synthesis of fatty acid alkyl esters by means of transesterification of waste beef tallow using ethanol and, iso-butanol and 1-butanol at supercritical conditions. These alcohols are proposed for the synthesis of biodiesel in order to [...] Read more.
The effect of temperature was studied on the synthesis of fatty acid alkyl esters by means of transesterification of waste beef tallow using ethanol and, iso-butanol and 1-butanol at supercritical conditions. These alcohols are proposed for the synthesis of biodiesel in order to improve the cold flow properties of alkyl esters. Alcohol–beef tallow mixtures were fed to a high-pressure high-temperature autoclave at a constant molar ratio of 45:1. Reactions were carried out in the ranges of 310–390 °C and 310–420 °C for ethanol and iso-butanol, respectively; meanwhile, synthesis using 1-butanol was assessed only at 360 °C. After separation of fatty acid alkyl esters, these samples were characterized by nuclear magnetic resonance (NMR) and gas chromatography coupled to mass spectrometry (GC-MS) to quantify yields, chemical composition, and molecular weight. Results indicated that yields enhanced as temperature increased; the maximum yields for fatty acid ethyl esters (FAEEs) were attained at 360 °C, and for fatty acid butyl esters (FABEs) were achieved at 375 °C; beyond these conditions, the alkyl ester yields reached equilibrium. Concerning the physicochemical properties of biodiesel, the predicted cetane number and cloud point were enhanced compared to those of fatty acid methyl esters. Full article
Show Figures

Graphical abstract

Back to TopTop